Skip to main content
Log in

Low-light image enhancement based on multi-illumination estimation

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Images captured by cameras in low-light conditions have low quality and appear dark due to insufficient light exposure, which critically affects the view. Most of the traditional enhancement methods are based on the entire image for exposure enhancement, so overexposed areas in the image have the risk of secondary enhancement. In order to fully consider the exposure in low-light images, we propose a low-light image enhancement based on multi-illumination estimation, which can robustly produce high-quality results for various underexposures. The core of the proposed method is to derive multiple exposure correction images using light estimation. Then, we used a Laplacian multi-scale fusion method to combine the weight map and the images with different degrees of exposure. We used gamma correction and inversion on the original image to produce images with different exposure levels (such as underexposure, overexposure, and partial area overexposure and underexposure). The gamma-corrected image is used for lighting adjustment of underexposed areas in low-light images, while the inversion image is used for adjustment of the overexposed regions. We performed experiments on various images using multiple methods and evaluated and compared the experimental results, qualitatively and quantitatively. Experimental results show that the proposed method in this study can effectively eliminate the effects of low light and improve image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jang S, Yoon I, Kim D et al (2012) Image processing-based validation of unrecognizable numbers in severely distorted license plate images. IEIE Trans Smart Process Comput 1(1):17–26

    Google Scholar 

  2. Pizer SM, Johnston RE, Ericksen JP et al (1990) Contrast-limited adaptive histogram equalization: speed and effectiveness. In: Proceedings of the first conference on visualization in biomedical computing, pp 337–345

  3. Lee SH, Zhang D, Ko SJ (2015) Image contrast enhancement based on a multi-cue histogram. IEIE Trans Smart Process Comput 4(5):349–353

    Article  Google Scholar 

  4. Land EH (1964) The retinex. Amer Sci 52(2):247–264

    Google Scholar 

  5. Land EH, McCann JJ (1971) Lightness and retinex theory. JOSA 61(1):1–11

    Article  Google Scholar 

  6. Fu X, Zeng D, Huang Y et al (2016) A weighted variational model for simultaneous reflectance and illumination estimation. In: IEEE Conference on computer vision and pattern recognition, pp 2782–2790

  7. Banić N, Lončarić S (2013) Light random sprays Retinex: exploiting the noisy illumination estimation. IEEE Signal Process Lett 20(12):1240–1243

    Article  Google Scholar 

  8. Jobson DJ, Rahman Z, Woodell GA (1997) Properties and performance of a center/surround retinex. IEEE Trans Image Process 6(3):451–462

    Article  Google Scholar 

  9. Petro A, Sbert C, Morel J (2014) Multiscale Retinex. Image Processi Line 4:71–88

    Article  Google Scholar 

  10. Jobson DJ, Rahman Z, Woodell GA (1997) A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans Image Process 6(7):965–76

    Article  Google Scholar 

  11. Ren X, Li M, Cheng WH, Liu J et al (2018) Joint enhancement and denoising method via sequential decomposition. IEEE Int Symp Circ Syst, 1–5

  12. Ying Z, Li G, Gao W (2017) A bio-inspired multi-exposure fusion framework for low-light image enhancement, arXiv:1711.00591

  13. Zhang L, Shen P, Peng X et al (2016) Simultaneous enhancement and noise reduction of a single low-light image. IET Image Process 10(11):840–847

    Article  Google Scholar 

  14. Mertens T, Kautz J, Reeth FV (2007) Exposure fusion. In: Proc. 15th Pacific conference on computer graphics and applications, pp 382–390

  15. Yuan LT, Swee SK, Ping TC (2015) Infrared image enhancement using adaptive trilateral contrast enhancement. Pattern Recogn Lett 54:103–108

    Article  Google Scholar 

  16. Fu X, Zeng D, Huang Y et al (2016) A fusion-based enhancing method for weakly illuminated images. Signal Process 129:82–96

    Article  Google Scholar 

  17. Guo X, Li Y, Ling H (2017) Lime: low-light image enhancement via illumination map estimation. IEEE Trans Image Process 26(2):982–993

    Article  MathSciNet  Google Scholar 

  18. Zhao C, Wang X, Zuo W, Shen F, Shao L, Miao D (2020) Similarity learning with joint transfer constraints for person re-identification. Pattern Recognit 97. https://doi.org/10.1016/j.patcog.2019.107014https://doi.org/10.1016/j.patcog.2019.107014

  19. Zhao C, Chen K, Zang D, et al. (2019) Uncertainty-optimized deep learning model for small-scale person re-identification. Sci China Inform Sci 62:220102

    Article  Google Scholar 

  20. Zhao C, Chen K, Wei Z et al (2018) Multilevel triplet deep learning model for person re-identification. Pattern Recogn Lett 117:161–168

    Article  Google Scholar 

  21. Zhao C, Lv X, Zhang Z, Zuo W, Wu J, Miao D (2020) Deep fusion feature representation learning with hard mining center-triplet-loss for person re-identification. IEEE Trans MultiMedia. https://doi.org/10.1109/TMM.2020.2972125

  22. Oh TH, Lee JY, Tai YW, Kweon IS, et al. (2015) Robust high dynamic range imaging by rank minimization. IEEE Trans Pattern Anal Mach Intell 37(6):1219–1232

    Article  Google Scholar 

  23. Cai J, Gu S, Zhang L (2018) Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans Image Process 27(4):2049–2062

    Article  MathSciNet  Google Scholar 

  24. Kim YT (1997) Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electron 43(1):1–8

    Article  Google Scholar 

  25. Wan Y, Chen Q, Zhang B (1999) Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans Consum Electron 45(1):68–75

    Article  Google Scholar 

  26. Wang C, Peng J, Ye Z (2008) Flattest histogram specification with accurate brightness preservation. IET Image Process Lett 2(5):249–262

    Article  Google Scholar 

  27. Dai Q, Pu YF, Rahman Z et al (2019) Fractional-order fusion model for low-light image enhancement. Symmetry 11(4):574

    Article  Google Scholar 

  28. Malm H, Oskarsson M, Warrant E (2007) Adaptive enhancement and noise reduction in very low light-level video. In: Proceedings of IEEE international conference on computer vision, pp 1–8

  29. Provenzi E (2017) Similarities and differences in the mathematical formalizations of the retinex model and its variants. In: International workshop on computational color imaging. Springer, pp 55–67

  30. Lv F, Lu F, Wu J, Lim C (2018) MBLLEN: low-light image/video enhancement using CNNs. British Mach Vis Conf, 220

  31. Lore KG, Akintayo A, Sarkar S (2017) LLNET: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn 61:650–662

    Article  Google Scholar 

  32. Zhang Y, Zhang J, Guo X (2019) Kindling the darkness: a practical low-light image enhancer. arXiv:1905.04161

  33. Wang S, Zheng JH, Hu M, Li B (2013) Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans Image Process 22(9):3538–3548

    Article  Google Scholar 

  34. Zhang Q, Nie Y, Zheng WS (2019) Computer graphics forum dual illumination estimation for robust exposure correction. Comput Graph Forum 38(7):1–10

    Article  Google Scholar 

  35. Li L, Wang R, Wang W et al (2015) A low-light image enhancement method for both denoising and contrast enlarging. IEEE Int Conf Image Process, 3730–3734

  36. Bertalmío M (2014) Image processing for cinema. CRC Press

  37. Land EH (1977) The retinex theory of colorvision. Sci Amer 237(6):108–129

    Article  MathSciNet  Google Scholar 

  38. Xu L, Yan Q, Xia Y, Jia J (2012) Structure extraction from texture via relative total variation. ACM Trans Graph 31(6):139

    Google Scholar 

  39. Burt PJ, Kolczynski RJ (1993) Enhanced image capture through fusion. In: Computer vision, proceedings ieee international conference on computer vision, pp 173–182

  40. Vonikakis V, Bouzos O, Andreadis I et al (2011) Multi-exposure image fusion based on illumination estimation. IASTED SIPA, 135–142

  41. Mertens T, Kautz J, Reeth FV (2007) Exposure fusion, Pacific Conference on Computer Graphics and Applications, 382–390

  42. Burt P, Adelson E (1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31(4):532–540

    Article  Google Scholar 

  43. Galdran A (2018) Image dehazing by artificial multiple-exposure image fusion. Signal Process 149:135–147

    Article  Google Scholar 

  44. Wang S, Zheng J, Hu HM et al (2013) Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans Image Process 22(9):3538–3548

    Article  Google Scholar 

  45. NASA (2001) Retinex image processing. http://dragon.larc.nasa.gov/retinex/pao/news/

  46. Loh YP, Chan CS, Chee SC (2019) Getting to know low-light images with the exclusively dark dataset. Comput Vis Image Understand 178:30–42

    Article  Google Scholar 

  47. Mittal A, Soundararajan R et al (2013) Making a ’Completely Blind’ image quality analyzer. IEEE Signal Process Lett 20(3):209–212

    Article  Google Scholar 

  48. Mittal A, Moorthy AK, Bovik AC et al (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708

    Article  MathSciNet  Google Scholar 

  49. Sheikh HR, Bovik AC (2006) Image information and visual quality. IEEE Trans Image Process 15(2):430–444

    Article  Google Scholar 

  50. Zhang L, Zhang L, Mou X et al (2011) Fsim: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):378–2386

    MathSciNet  MATH  Google Scholar 

  51. Ying Z, Li G, Ren Y et al (2017) A new image contrast enhancement algorithm using exposure fusion framework. In: International conference on computer analysis of images and patterns, pp 36–46

Download references

Acknowledgments

The authors acknowledge the National Natural Science Foundation of China (Grant nos. 61772319, 61976125, 61873177 and 61773244), and Shandong Natural Science Foundation of China (Grant no. ZR2017MF049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjiang Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Li, J., Hua, Z. et al. Low-light image enhancement based on multi-illumination estimation. Appl Intell 51, 5111–5131 (2021). https://doi.org/10.1007/s10489-020-02119-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-02119-y

Keywords

Navigation