Skip to main content
Log in

An improved multiobjective cultural algorithm with a multistrategy knowledge base

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Based on the dual-inheritance framework of cultural evolution, an improved multiobjective cultural algorithm (IMOCA) with a multistrategy knowledge base is presented in this paper. Inspired by the original versions of the cultural algorithm (CA), four basic types of knowledge sources, i.e., normative, situational, topographical and historical knowledge, are effectively utilized in the proposed IMOCA. Several modifications with the knowledge base of the IMOCA are made to tackle the characteristics of the multiobjective problem. Situational knowledge is used as an external repository for storing elite individuals, and the redesigned topographical knowledge functions as a search engine to broaden the expansion of the obtained solution set. The historical knowledge used in the IMOCA aims to select a productive knowledge source to generate new individuals. Furthermore, a simple mutation scheme is introduced into the knowledge base as an influence function for the purpose of fine tuning in the late stage of search. After configuring the parameters used in IMOCA, two classic benchmark suites, i.e., WFG and MaF, are used to assess the performance of the IMOCA in approaching the Pareto fronts (PFs) with accuracy and diversity. Nondominated solution sets obtained by the IMOCA are compared with 8 state-of-the-art multiobjective algorithms available in the literature. A statistical analysis is conducted, which reveals that, by modifying the basic knowledge structure of the CA, the proposed multiobjective cultural algorithm is competent enough to handle multiobjective problems with competitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdolrazzagh-Nezhad M, Radgohar H, Salimian SN (2020) Enhanced cultural algorithm to solve multi-objective attribute reduction based on rough set theory. Math Comput Simul 170:332–350

    Article  MathSciNet  Google Scholar 

  2. Becerra RL, Coello CAC (2004) Culturizing differential evolution for constrained optimization. In: Proceedings of the fifth mexican international conference in computer science, 2004. ENC 2004. IEEE, pp 304–311

  3. Best C, Che X, Reynolds RG, Liu D (2010) Multi-objective cultural algorithms. In: IEEE congress on evolutionary computation. IEEE, pp 1–9

  4. Booker L, Forrest S, Mitchell M, Riolo R (2005) Perspectives on adaptation in natural and artificial systems. Oxford University Press

  5. Chen B, Zeng W, Lin Y, Zhang D (2015) A new local search-based multiobjective optimization algorithm. IEEE Trans Evol Comput 19(1):50–73

    Article  Google Scholar 

  6. Cheng R, Li M, Tian Y, Zhang X, Yang S, Jin Y, Yao X (2017) A benchmark test suite for evolutionary many-objective optimization. Complex & Intelligent Systems 3(1):67–81

    Article  Google Scholar 

  7. Chung C (1997) Knowledge-based approaches to self-adaptation in cultural algorithms. PhD thesis, Wayne State University, Detroit, Michigan

  8. Chung CJ, Reynolds RG (1996) A testbed for solving optimization problems using cultural algorithms. In: Evolutionary programming, pp 225–236

  9. Chung CJ, Reynolds RG (1998) CAEP - an evolution-based tool for real-valued function optimization using cultural algorithms. International Journal on Artificial Intelligence Tools 07(03):239–291

    Article  Google Scholar 

  10. Coello CAC (2015) EMOO repository. http://delta.cs.cinvestav.mx/ccoello/EMOO/

  11. Coello CAC (2015) Multi-objective evolutionary algorithms in real-world applications: some recent results and current challenges. In: Advances in evolutionary and deterministic methods for design, optimization and control in engineering and sciences. Springer, pp 3–18

  12. Coello CAC, Becerra RL (2003) Evolutionary multiobjective optimization using a cultural algorithm. In: Proceedings of the 2003 IEEE swarm intelligence symposium. SIS’03 (Cat. No.03EX706). IEEE, pp 6–13

  13. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279

    Article  Google Scholar 

  14. Corne DW, Knowles JD, Oates MJ (2000) The Pareto envelope-based selection algorithm for multiobjective optimization. In: International conference on parallel problem solving from nature. Springer, Berlin, pp 839–848

  15. Corne DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the genetic and evolutionary computation conference, pp 283–290

  16. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    MATH  Google Scholar 

  17. Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: International conference on parallel problem solving from nature. Springer, Paris, France, pp 849–858

  18. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation 1(1):3–18

    Article  Google Scholar 

  19. Fonseca C, Knowles J, Thiele L, Zitzler E (2005) A tutorial on the performance assessment of stochastic multiobjective optimizers. Tech. rep., Evolutionary Multi-Criterion Optimization Conference (EMO 2005), Guanajuato, Mexico

  20. Gao H, Diao M (2011) Cultural firework algorithm and its application for digital filters design. International Journal of Modelling Identification & Control 14(4):324

    Article  Google Scholar 

  21. Guo YN, Yang Z, Wang C, Gong D (2017) Cultural particle swarm optimization algorithms for uncertain multi-objective problems with interval parameters. Nat Comput 16(4):527–548

    Article  MathSciNet  Google Scholar 

  22. Guo YN, Zhang P, Cheng J, Wang C, Gong D (2018) Interval multi-objective quantum-inspired cultural algorithms. Neural Comput & Applic 30(3):709–722

    Article  Google Scholar 

  23. Holland J (1975) Adaptation in natural and artificial Systems. Second edition (1992). (First edition, University of Michigan Press, 1975). MIT Press, Cambridge

    Google Scholar 

  24. Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506

    Article  Google Scholar 

  25. Jin X, Reynolds RG (1999) Using knowledge-based evolutionary computation to solve nonlinear constraint optimization problems: a cultural algorithm approach. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 3. IEEE, pp 1672–1678

  26. Jin X, Reynolds RG (1999) Using knowledge-based system with hierarchical architecture to guide the search of evolutionary computation. In: Proceedings 11th international conference on tools with artificial intelligence. https://doi.org/10.1109/tai.1999.809762. IEEE, Chicago, pp 29–36

  27. Li M, Yang S, Liu X (2016) Pareto or non-pareto: bi-criterion evolution in multiobjective optimization. IEEE Trans Evol Comput 20(5):645–665

    Article  Google Scholar 

  28. Liu T, Jiao L, Ma W, Ma J, Shang R (2016) A new quantum-behaved particle swarm optimization based on cultural evolution mechanism for multiobjective problems. Knowl-Based Syst 101:90–99

    Article  Google Scholar 

  29. Lu Y, Zhou J, Qin H, Wang Y, Zhang Y (2011) A hybrid multi-objective cultural algorithm for short-term environmental/economic hydrothermal scheduling. Energy Convers Manag 52(5):2121–2134

    Article  Google Scholar 

  30. Mao Z, Xiang Y, Zhang Y, Liu M (2020) A novel multi-objective cultural algorithm embedding five-element cycle optimization. In: 2020 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–10

  31. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts - towards memetic algorithms. Caltech Concurrent Computation Program

  32. Moscato P, Cotta C (2003) A gentle introduction to memetic algorithms. In: Handbook of metaheuristics. Kluwer Academic Publishers, Boston, pp 105–144

  33. Qin H, Zhou J, Lu Y, Li Y, Zhang Y (2010) Multi-objective cultured differential evolution for generating optimal trade-offs in reservoir flood control operation. Water Resour Manag 24(11):2611–2632

    Article  Google Scholar 

  34. Reynolds RG (1994) An introduction to cultural algorithms. In: Proceedings of the third annual conference on evolutionary programming. World Scientific, Singapore, pp 131–139

  35. Reynolds RG (2018) Culture on the edge of chaos: cultural algorithms and the foundations of social intelligence. SpringerBriefs in Computer Science, Springer International Publishing

  36. Reynolds RG, Chung C (1997) Knowledge-based self-adaptation in evolutionary programming using cultural algorithms. In: IEEE international conference on evolutionary computation , pp 71–76

  37. Reynolds RG, Chung CJ (1996) A self-adaptive approach to representation shifts in cultural algorithms. In: IEEE international conference on evolutionary computation. IEEE, pp 94–99

  38. Reynolds RG, Liu D (2011) Multi-objective cultural algorithms. In: 2011 IEEE congress of evolutionary computation (CEC). IEEE, pp 1233–1241

  39. Saleem SM (2001) Knowledge-based solution to dynamic optimization problems using cultural algorithms. PhD thesis, Wayne State University, Detroit, Michigan

  40. Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. MIT Press 2(3):221–248

    Google Scholar 

  41. Stanley SD, Kattan K, Reynolds RG (2020) CAPSO. Cultural Algorithms 9:169–194. John Wiley & Sons, Ltd https://doi.org/10.1002/9781119403111.ch9, https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119403111.ch9, eprint https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119403111.ch9

    Article  Google Scholar 

  42. Tian Y, Zhang X, Cheng R, Jin Y (2016) A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric. In: 2016 IEEE congress on evolutionary computation (CEC), pp 5222–5229

  43. Tian Y, Cheng R, Zhang X, Jin Y (2017) PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput Intell Mag 12(4):73–87

    Article  Google Scholar 

  44. Yan X, Song T, Wu Q (2017) An improved cultural algorithm and its application in image matching. Multimedia Tools & Applications 76(13):14951–14968

    Article  Google Scholar 

  45. Yuan X, Yuan Y (2006) Application of cultural algorithm to generation scheduling of hydrothermal systems. Energy Conversion & Management 47(15/16):2192–2201

    Article  Google Scholar 

  46. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation 11(6):712–731

    Article  Google Scholar 

  47. Zhang R, Zhou J, Mo L, Ouyang S, Liao X (2013) Economic environmental dispatch using an enhanced multi-objective cultural algorithm. Electr Power Syst Res 99:18–29

    Article  Google Scholar 

  48. Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications, vol 63. Citeseer

  49. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evolutionary Computation 3(4):257–271

    Article  Google Scholar 

  50. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms - empirical results. Evol Comput 8(2):173–195

    Article  Google Scholar 

  51. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. TIK-report 103

  52. Zitzler E, Thiele L, Laumanns M, Fonseca CM, Fonseca VGD (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandan Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Performance of different knowledge source as IMOCA solving MaF test suite

Appendix: Performance of different knowledge source as IMOCA solving MaF test suite

Here in A, Figs. 910111213141516171819202122 and 23 show the minimum values for \({\sum }_{m=1}^{M} f_{m}(\mathbf {x})\) when the IMOCA optimizing the MaF test suite in a random run.

Fig. 9
figure 9

The minimum values for \({\sum }_{m=1}^{M} f_{m}(\mathbf {x})\) when optimizing MaF1 using the IMOCA (iteration t ∈ [1,300])

Fig. 10
figure 10

The minimum values for \({\sum }_{m=1}^{M} f_{m}(\mathbf {x})\) when optimizing MaF2 using the IMOCA (iteration t ∈ [1,300])

Fig. 11
figure 11

The minimum values for \({\sum }_{m=1}^{M} f_{m}(\mathbf {x})\) when optimizing MaF3 using the IMOCA (iteration t ∈ [1,300])

Fig. 12
figure 12

The minimum values for \({\sum }_{m=1}^{M} f_{m}(\mathbf {x})\) when optimizing MaF4 using the IMOCA (iteration t ∈ [1,300])

Fig. 13
figure 13

The minimum values for \({\sum }_{m=1}^{M} f_{m}(\mathbf {x})\) when optimizing MaF5 using the IMOCA (iteration t ∈ [1,300])

Fig. 14
figure 14

The minimum values for \({\sum }_{m=1}^{M} f_{m}(\mathbf {x})\) when optimizing MaF6 using the IMOCA (iteration t ∈ [1,300])

Fig. 15
figure 15

The minimum values for \({\sum }_{m=1}^{M} f_{m}(\mathbf {x})\) when optimizing MaF7 using the IMOCA (iteration t ∈ [1,300])

Fig. 16
figure 16

The minimum values for \({\sum }_{m=1}^{M} f_{m}(\mathbf {x})\) as when optimizing MaF8 using the IMOCA (iteration t ∈ [1,300])

Fig. 17
figure 17

The minimum values for \({\sum }_{m=1}^{M} f_{m}(\mathbf {x})\) when optimizing MaF9 using the IMOCA (iteration t ∈ [1,300])

Fig. 18
figure 18

The minimum values for \({\sum }_{m=1}^{M} f_{m}(\mathbf {x})\) when optimizing MaF10 using the IMOCA (iteration t ∈ [1,300])

Fig. 19
figure 19

The minimum values for \({\sum }_{m=1}^{M} f_{m}(\mathbf {x})\) when optimizing MaF11 using the IMOCA (iteration t ∈ [1,300])

Fig. 20
figure 20

The minimum values for \({\sum }_{m=1}^{M} f_{m}(\mathbf {x})\) when optimizing MaF12 using the IMOCA (iteration t ∈ [1,300])

Fig. 21
figure 21

The minimum values for \({\sum }_{m=1}^{M} f_{m}(\mathbf {x})\) when optimizing MaF13 using the IMOCA (iteration t ∈ [1,300])

Fig. 22
figure 22

The minimum values for \({\sum }_{m=1}^{M} f_{m}(\mathbf {x})\) when optimizing MaF14 using the IMOCA (iteration t ∈ [1,300])

Fig. 23
figure 23

The minimum values for \({\sum }_{m=1}^{M} f_{m}(\mathbf {x})\) when optimizing MaF15 using the IMOCA (iteration t ∈ [1,300])

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Z., Liu, M. An improved multiobjective cultural algorithm with a multistrategy knowledge base. Appl Intell 52, 1157–1187 (2022). https://doi.org/10.1007/s10489-021-02313-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02313-6

Keywords

Navigation