Skip to main content
Log in

Multilayer neural network based asymptotic motion control of saturated uncertain robotic manipulators

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Composite influences coming from signal measurement noises, unknown nonlinear dynamics, external disturbances and input saturation nonlinearity make it challenging to synthesize high-performance closed-loop control algorithms for uncertain robotic manipulators. In the face of these challenges, we employ the nonlinear multilayer neural networks to approach uncertain nonlinear dynamics and exploit the robust adaptive control to deal with external disturbances without knowing their bounds in advance. More importantly, robust adaptive based auxiliary functions are creatively introduced to offset the possible input saturation nonlinearity. Furthermore, the desired trajectory based model compensation technology is integrated into the control scheme to reduce measurement noises as much as possible. In theory, the global closed-loop stability of the dynamical uncertain system is testified and significant asymptotic tracking result can be acquired. The application verification under different working conditions including severe high-frequency working conditions is implemented to indicate the high-performance effect of the synthesized intelligent controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lewis FL, Vrabie D, Syrmos VL (2012) Optimal control. 3rd ed. Wiley, New York

    Book  Google Scholar 

  2. Patre PM, Mackunis W, Makkar C et al (2008) Asymptotic tracking for systems with structured and unstructured uncertainties. IEEE Trans Control Syst Technol 16(2):373–379

    Article  Google Scholar 

  3. Capisani LM, Ferrara A (2012) Trajectory planning and second-order sliding mode motion/interaction control for robot manipulators in unknown environments. IEEE Trans Ind Electron 59(8):3189–3198

    Article  Google Scholar 

  4. Yang Z, Fukushima Y, Qin P (2012) Decentralized adaptive robust control of robot manipulators using disturbance observers. IEEE Trans Control Syst Technol 20(5):1357–1365

    Article  Google Scholar 

  5. Bouakrif F, Boukhetala D, Boudjema F (2013) Velocity observer-based iterative learning control for robot manipulators. Int J Syst Sci 44(2):214–222

    Article  MathSciNet  Google Scholar 

  6. Kolhe JP, Shaheed, Chandar TS et al (2013) Robust control of robot manipulators based on uncertainty and disturbance estimation. Int J Robust Nonlinear Control 23(1):104–122

    Article  MathSciNet  Google Scholar 

  7. Islam S, Liu XP (2011) Robust sliding mode control for robot manipulators. IEEE Trans Ind Electron 58(6):2444–2453

    Article  Google Scholar 

  8. Yang G, Wang H, Chen J, Zhang H (2020) Command filtered robust control of nonlinear systems with full-state time-varying constraints and disturbances rejection. Nonlinear Dynamics 101(4):2325–2342

    Article  Google Scholar 

  9. Baek J, Jin M, Han S (2016) A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Trans Ind Electron 63(6):3628–3637

    Article  Google Scholar 

  10. Nojavanzadeh D, Badamchizadeh MA (2016) Adaptive fractional-order non-singular fast terminal sliding mode control for robot manipulators. IET Control Theory Appl 10(13):1565–1572

    Article  MathSciNet  Google Scholar 

  11. Wang Y, Gu L, Xu Y, Cao X (2016) Practical tracking control of robot manipulators with continuous fractional-order nonsingular terminal sliding mode. IEEE Trans Ind Electron 63(10):6194–6204

    Article  Google Scholar 

  12. Jin M, Kang SH, Chang PH, Lee J (2017) Robust control of robot manipulators using inclusive and enhanced time delay control. IEEE/ASME Trans Mechatron 22(5):2141–2152

    Article  Google Scholar 

  13. Van M, Ge SS, Ren H (2017) Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control. IEEE Trans Syst Man Cybern 47(7):1681–1693

    Google Scholar 

  14. Chen D, Zhang Y, Li S (2018) Tracking control of robot manipulators with unknown models: a Jacobian-matrix-adaption method. IEEE Trans Ind Inf 14(7):3044–3053

    Article  Google Scholar 

  15. Kali Y, Saad M, Benjelloun K, Khairallah C (2018) Super-twisting algorithm with time delay estimation for uncertain robot manipulators. Nonlinear Dyn 93(2):557–569

    Article  Google Scholar 

  16. Baek J, Kwon W, Kim B, Han S (2019) A widely adaptive time-delayed control and its application to robot manipulators. IEEE Trans Ind Electron 66(7):5332–5342

    Article  Google Scholar 

  17. Homayounzade M, Khademhosseini A (2019) Disturbance observer-based trajectory following control of robot manipulators. Int J Control Autom Syst 17(1):203–211

    Article  Google Scholar 

  18. Patre PM, MacKunis W, Kaiser K, Dixon WE (2008) Asymptotic tracking for uncertain dynamic systems via a multilayer neural network feedforward and RISE feedback control structure. IEEE Trans Autom Control 53(9):2180–2185

    Article  MathSciNet  Google Scholar 

  19. Kumar N, Panwar V, Sukavanam N, Sharma SP, Borm JH (2011) Neural network based hybrid force/position control for robot manipulators. Int J Precis Eng Manuf 12(3):419–426

    Article  Google Scholar 

  20. Miljkovic Z, Mitic M, Lazarevic MP et al (2013) Neural network reinforcement learning for visual control of robot manipulators. Expert Syst Appl 40(5):1721–1736

    Article  Google Scholar 

  21. Wai R, Muthusamy R (2013) Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics. IEEE Trans Neural Netw 24(2):274–287

    Article  Google Scholar 

  22. Yu W, Rosen J (2013) Neural PID control of robot manipulators with application to an upper limb exoskeleton. IEEE Trans Syst Man Cybernet 43(2):673–684

    Google Scholar 

  23. Wai R, Muthusamy R (2014) Design of fuzzy-neural-network-inherited backstepping control for robot manipulator including actuator dynamics. IEEE Trans Fuzzy Syst 22(4):709–722

    Article  Google Scholar 

  24. Jiang Y, Liu Z, Chen C, Zhang Y (2015) Adaptive robust fuzzy control for dual arm robot with unknown input deadzone nonlinearity. Nonlinear Dynamics 81(3):1301–1314

    Article  MathSciNet  Google Scholar 

  25. He W, Dong Y, Sun C (2016) Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans Syst Man Cybernet Syst 46(3):334–344

    Article  Google Scholar 

  26. He W, Chen Y, Yin Z (2017) Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans Cybernet 46(3):620–629

    Article  Google Scholar 

  27. Wang M, Yang A (2017) Dynamic learning from adaptive neural control of robot manipulators with prescribed performance. IEEE Trans Syst Man Cybernet: Syst 47(8):2244–2255

    Article  Google Scholar 

  28. Rahimi HN, Howard I, Cui L (2018) Neural network adaptive control design for robot manipulators under velocity constraints. J Franklin Institute 355(2):693–713

    Article  MathSciNet  Google Scholar 

  29. Zhang Z, Fu T, Yan Z et al. A varying-parameter convergent-differential neural network for solving joint-angular-drift problems of redundant robot manipulators. IEEE/ASME Trans Mechatronics:1–1, 2018

  30. Zhou Q, Zhao S, Li H et al. (2018) Adaptive neural network tracking control for robotic manipulators with dead zone. IEEE Trans Neural Networks Learn Syst:1–10

  31. Yang G, Yao J, Le G et al (2016) Adaptive integral robust control of hydraulic systems with asymptotic tracking. Mechatronics 40:78–86

    Article  Google Scholar 

  32. Yang G, Yao J (2020) High-precision motion servo control of double-rod electro-hydraulic actuators with exact tracking performance. ISA Trans 103:266–279

    Article  Google Scholar 

  33. Polycarpou MM, Ioannou PA (1996) A robust adaptive nonlinear control design. Automatica 32(3):423–427

    Article  MathSciNet  Google Scholar 

  34. Yang G, Yao J (2019) Output feedback control of electro-hydraulic servo actuators with matched and mismatched disturbances rejection. J Franklin Institute 356(16):9152–9179

    Article  MathSciNet  Google Scholar 

  35. Yang G, Yao J (2020) Nonlinear adaptive output feedback robust control of hydraulic actuators with largely unknown modeling uncertainties. Appl Math Model 79:824–842

    Article  MathSciNet  Google Scholar 

  36. Sun K, Huang SH, Wong DSH, Jang SS (2016) Design and application of a variable selection method for multilayer perceptron neural network with LASSO. IEEE Trans Neural Networks Learn Syst 28(6):1386–1396

    Article  Google Scholar 

  37. Zhang Z, Xie XJ (2014) Asymptotic tracking control of uncertain nonlinear systems with unknown actuator nonlinearity. IEEE Trans Autom Control 59(5):1336–1341

    Article  MathSciNet  Google Scholar 

  38. Liu YH (2018) Dynamic surface asymptotic tracking of a class of uncertain nonlinear hysteretic systems using adaptive filters. J Franklin Institute 355(1):123–140

    Article  MathSciNet  Google Scholar 

  39. Yang G, Wang H, Chen J (2021) Disturbance compensation based asymptotic tracking control for nonlinear systems with mismatched modeling uncertainties. Int J Robust Nonlinear Control:1–18. https://doi.org/10.1002/rnc.5436

  40. Krstic M, Kanellakopoulos I, Kokotovic PV (1995) Nonlinear and adaptive control design. Wiley, New York

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 52005249, in part by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant 20KJB460019 and in part by the Key Research & Development Program of Jiangsu Province under Grant BE2019007-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guichao Yang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Proof of Theorem 1

A continuously differentiable Lyapunov function candidate VL can be chosen as

$$ {\displaystyle \begin{array}{c}{V}_L=\frac{1}{2}{e}_1^T{e}_1+\frac{1}{2}{e}_2^T{e}_2+\frac{1}{2}{\eta}_1^T{\eta}_1+\frac{1}{2}{\eta}_2^T{\eta}_2+\frac{1}{2} tr\left({\overset{\sim }{W}}^T{\Upsilon}^{-1}\overset{\sim }{W}\right)\\ {}+\frac{1}{2} tr\left({\overset{\sim }{V}}^T{\Gamma}^{-1}\overset{\sim }{V}\right)+\frac{1}{2r}{\overset{\sim }{\phi}}^T\overset{\sim }{\phi }+\frac{1}{2s}{\overset{\sim }{\omega}}^T\overset{\sim }{\omega}\end{array}} $$
(26)

where tr(•) represents the trace of the matrix •.

Take the time derivative of the Eq. (26) yields

$$ {\displaystyle \begin{array}{c}{\dot{V}}_L={e}_1^T{\dot{e}}_1+{e}_2^T{\dot{e}}_2+{\eta}_1^T{\dot{\eta}}_1+{\eta}_2^T{\dot{\eta}}_2+ tr\left({\overset{\sim }{W}}^T{\Upsilon}^{-1}\dot{\overset{\sim }{W}}\right)\\ {}+ tr\left({\overset{\sim }{V}}^T{\Gamma}^{-1}\dot{\overset{\sim }{V}}\right)-\frac{1}{r}{\overset{\sim }{\phi}}^T\dot{\hat{\phi}}-\frac{1}{s}{\overset{\sim }{\omega}}^T\dot{\hat{\omega}}\end{array}} $$
(27)

Substituting (9), (15) and (19) into (27) yields

$$ {\displaystyle \begin{array}{c}{\dot{V}}_L={e}_2^T\left[-{k}_2{e}_2+{P}_1+{P}_2+\overset{\sim }{\varphi}\left({\zeta}_1,{\dot{\zeta}}_1,{\zeta}_{1r},{\dot{\zeta}}_{1r}\right)+\Omega (t)+{\upsilon}_s\right]\\ {}+{e}_1^T\left({e}_2-{k}_1{e}_1\right)+{\eta}_1^T\left({\eta}_2-{k}_1{\eta}_1\right)+{\eta}_2^T\left(\Delta u-{k}_2{\eta}_2+{\eta}_s\right)\\ {}+ tr\left({\overset{\sim }{W}}^T{\mathrm{Y}}^{-1}\dot{\overset{\sim }{W}}\right)+ tr\left({\overset{\sim }{V}}^T{\Gamma}^{-1}\dot{\overset{\sim }{V}}\right)-\frac{1}{r}{\overset{\sim }{\phi}}^T\dot{\hat{\phi}}-\frac{1}{s}{\overset{\sim }{\omega}}^T\dot{\hat{\omega}}\end{array}} $$
(28)

Afterwards, (28) can be reorganized as

$$ {\displaystyle \begin{array}{c}{\dot{V}}_L=-{k}_1{\left\Vert {e}_1\right\Vert}^2-{k}_2{\left\Vert {e}_2\right\Vert}^2-{k}_1{\left\Vert {\eta}_1\right\Vert}^2-{k}_2{\left\Vert {\eta}_2\right\Vert}^2\\ {}+{e}_1^T{e}_2+{\eta}_1^T{\eta}_2+{e}_2^T{P}_1+{e}_2^T\overset{\sim }{\varphi}\left({\zeta}_1,{\dot{\zeta}}_1,{\zeta}_{1r},{\dot{\zeta}}_{1r}\right)\\ {}\begin{array}{c}+{e}_2^T\left[{P}_2+\Omega (t)\right]+{e}_2^T{\upsilon}_s+{\eta}_2^T\Delta u+{\eta}_2^T{\eta}_s\\ {}+ tr\left({\overset{\sim }{W}}^T{\mathrm{Y}}^{-1}\dot{\overset{\sim }{W}}\right)+ tr\left({\overset{\sim }{V}}^T{\Gamma}^{-1}\dot{\overset{\sim }{V}}\right)-\frac{1}{r}{\overset{\sim }{\phi}}^T\dot{\hat{\phi}}-\frac{1}{s}{\overset{\sim }{\omega}}^T\dot{\hat{\omega}}\end{array}\end{array}} $$
(29)

The upper bound of (29) can be achieved as

$$ {\displaystyle \begin{array}{c}{\dot{V}}_L\le -{k}_1{\left\Vert {e}_1\right\Vert}^2-{k}_2{\left\Vert {e}_2\right\Vert}^2-{k}_1{\left\Vert {\eta}_1\right\Vert}^2-{k}_2{\left\Vert {\eta}_2\right\Vert}^2+{e}_1^T{e}_2+{\eta}_1^T{\eta}_2\\ {}+\left\Vert {e}_2\right\Vert \left\Vert \overset{\sim }{\varphi}\left({\zeta}_1,\dot{\zeta_1},{\zeta}_{1r},{\dot{\zeta}}_{1r}\right)\right\Vert +\left\Vert {e}_2\right\Vert \left\Vert {P}_2+\Omega (t)\right\Vert +{e}_2^T{\upsilon}_s\\ {}+\left\Vert {\eta}_2\right\Vert \left\Vert \Delta u\right\Vert +{\eta}_2^T{\eta}_s-\frac{1}{r}{\overset{\sim }{\phi}}^T\dot{\hat{\phi}}-\frac{1}{s}{\overset{\sim }{\omega}}^T\dot{\hat{\omega}}\end{array}} $$
(30)

Applying on Young’s inequality, we have

$$ {e}_1^T{e}_2\le \frac{1}{2}{\left\Vert {e}_1\right\Vert}^2+\frac{1}{2}{\left\Vert {e}_2\right\Vert}^2,{\eta}_1^T{\eta}_2\le \frac{1}{2}{\left\Vert {\eta}_1\right\Vert}^2+\frac{1}{2}{\left\Vert {\eta}_2\right\Vert}^2 $$
(31)

Noting the expressions of \( \overset{\sim }{\varphi}\left({\zeta}_1,{\dot{\zeta}}_1,{\zeta}_{1r},{\dot{\zeta}}_{1r}\right) \)and Δu, and (21), one yields

$$ \left\Vert \overset{\sim }{\varphi}\left({\zeta}_1,{\dot{\zeta}}_1,{\zeta}_{1r},{\dot{\zeta}}_{1r}\right)\right\Vert \le \rho \left(\left\Vert e\right\Vert \right)\left\Vert e\right\Vert, \left\Vert {P}_2+\Omega (t)\right\Vert \le \omega, \left\Vert \Delta u\right\Vert \le \phi $$
(32)

where ρ(•)∈+indicates any globally invertible non-decreasing function and e = [e1, e2]T.

Noting (24), (31) and (32), (29) can be rearranged as

$$ {\displaystyle \begin{array}{c}{\dot{V}}_L\le -\left({k}_1-\frac{1}{2}\right){\left\Vert {e}_1\right\Vert}^2-\frac{1}{2}{\left\Vert {e}_2\right\Vert}^2-\left({k}_1-\frac{1}{2}\right){\left\Vert {\eta}_1\right\Vert}^2\\ {}-\left({k}_2-\frac{1}{2}\right){\left\Vert {\eta}_2\right\Vert}^2-\left({k}_1-1\right){\left\Vert {e}_2\right\Vert}^2+\rho \left(\left\Vert e\right\Vert \right)\left\Vert {e}_2\right\Vert \left\Vert e\right\Vert \\ {}+\omega \left\Vert {e}_2\right\Vert +{e}_2^T{\upsilon}_s+\phi \left\Vert {\eta}_2\right\Vert +{\eta}_2^T{\eta}_s-\frac{1}{r}{\overset{\sim }{\phi}}^T\dot{\hat{\phi}}-\frac{1}{s}{\overset{\sim }{\omega}}^T\dot{\hat{\omega}}\end{array}} $$
(33)

Depending on the expressions of ηs and υs, one has

$$ {\displaystyle \begin{array}{c}{\dot{V}}_L\le -{\gamma}_1{\left\Vert e\right\Vert}^2+\frac{\rho^2\left(\left\Vert e\right\Vert \right){\left\Vert e\right\Vert}^2}{4\left({k}_2-1\right)}-{\gamma}_2{\left\Vert \eta \right\Vert}^2+\overset{\sim }{\phi}\left\Vert {\eta}_2\right\Vert \\ {}-\frac{1}{r}{\overset{\sim }{\phi}}^T\dot{\hat{\phi}}+\overset{\sim }{\omega}\left\Vert {e}_2\right\Vert -\frac{1}{s}{\overset{\sim }{\omega}}^T\dot{\hat{\omega}}\end{array}} $$
(34)

where γ1 = min{k1–1/2, 1/2} and γ2 = min{k1–1/2, k2–1/2}.

Furthermore, we have

$$ {\dot{V}}_L\le -{\gamma}_3{\left\Vert e\right\Vert}^2-{\gamma}_2{\left\Vert \eta \right\Vert}^2+\beta (t)+\delta (t) $$
(35)

where γ3 = γ1ρ2(||e||)/[4(k2–1)] and η = [η1, η2]T.

After integrating both sides of (35), one has

$$ {V}_L(t)+{\gamma}_2{\int}_0^t{\left\Vert \eta (v)\right\Vert}^2 dv+{\gamma}_3{\int}_0^t{\left\Vert e(v)\right\Vert}^2 dv\le {V}_L(0)+{\beta}_m+{\delta}_m $$
(36)

Consequently, it follows from (36) that VL(t),\( \hat{\omega} \),\( \hat{\phi} \), η and e are all bounded. Moreover, it is also easy to infer that ζ is bounded. Based on the Lemma 1, we can get that ηs is bounded. Moreover, we can also prove that ||υs||≤\( \hat{\omega}+\varepsilon {\hat{\omega}}^2 \)or ||υs||≤\( \hat{\omega} \), which means that υs is always bounded. Thus, all system signals can be guaranteed bounded. Furthermore, it can be concluded that \( {\int}_0^t{\left\Vert \eta (v)\right\Vert}^2 dv \)≤[VL(0) + βm + δm]/γ2 and \( {\int}_0^t{\left\Vert e(v)\right\Vert}^2 dv \)≤ [VL(0) + βm + δm]/γ3, which means ηL2 and eL2 [37,38,39]. Recalling the boundedness of all system signals under the closed-loop operation and observing the right hand side of the expressions (9), (15) and (19), we can conclude that \( \dot{\eta} \) and \( \dot{e} \) are bounded. In accordance with Barbalat’s lemma [40], we can achieve e1 → 0 as t → ∞. Therefore, all results in Theorem 1 are proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Wang, H. Multilayer neural network based asymptotic motion control of saturated uncertain robotic manipulators. Appl Intell 52, 2586–2598 (2022). https://doi.org/10.1007/s10489-021-02318-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02318-1

Keywords

Navigation