Skip to main content
Log in

Adaptive low-rank kernel block diagonal representation subspace clustering

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The kernel subspace clustering algorithm aims to tackle the nonlinear subspace model. The block diagonal representation subspace clustering has a more promising capability in pursuing the k-block diagonal matrix. Therefore, the low-rankness and the adaptivity of the kernel subspace clustering can boost the clustering performance, so an adaptive low-rank kernel block diagonal representation (ALKBDR) subspace clustering algorithm is put forward in this work. On the one hand, for the nonlinear nature of the practical visual data, a kernel block diagonal representation (KBDR) subspace clustering algorithm is put forward. The proposed KBDR algorithm first maps the original input space into the kernel Hilbert space which is linearly separable, and next applies the spectral clustering on the feature space. On the other hand, the ALKBDR algorithm uses the adaptive kernel matrix and makes the feature space low-rank to further promote the clustering performance. The experimental results on the Extended Yale B database and the ORL dataset have proved the excellent quality of the proposed KBDR and ALKBDR algorithm in comparison with other advanced subspace clustering algorithms that also are tested in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barik L (2020) Data mining approach for digital forensics task with deep learning techniques. Int J Adv Appl Sci 7(5):56–65

    Article  Google Scholar 

  2. Cai S S, Zhang J (2020) Exploration of credit risk of P2P platform based on data mining technology. J Comput Appl Math:372

  3. Elhamifar E, Vidal R (2009) Sparse subspace clustering. IEEE Conf Comput Vis Pattern Recogn:2790–2797

  4. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  Google Scholar 

  5. Elhamifar E, Vidal R (2010) Clustering disjoint subspaces via sparse representation. IEEE Int Conf Acoust Speech Signal Process:1926–1929

  6. You C, Robinson D, Vidal R (2016) Scalable sparse subspace clustering by orthogonal matching pursuit. Proc IEEE Conf Comput Vis Pattern Recognit:3918–3927

  7. Dyer E L, Studer C, Baraniuk R G (2013) Subspace clustering with dense representations. IEEE Int Conf Acoust Speech Signal Process:3258–3262

  8. Ji P, Salzmann M, Li H (2014) Efficient dense subspace clustering. IEEE Winter Conf Appl Comput Vis:461–468

  9. Favar P, Vidal R, Ravichandran A (2011) A closed form solution to robust subspace estimation and clustering. IEEE Conf Comput Vis Pattern Recogn:1801–1807

  10. Vidal R, Favaro P (2014) Low rank subspace clustering (LRSC). Pattern Recogn Lett:47–61

  11. Lu C Y, Min H, Zhao Z Q, Zhu L, Huang D S, Yan S (2012) Robust and efficient subspace segmentation via least squares regression. In: European conference on computer vision. Springer, Berlin, pp 347–360

  12. Bin C, Jianchao Y, Shuicheng Y, Yun F, Huang T S (2010) Learning with 1-graph for image analysis. IEEE Trans Image Process 19(4):858–866

    Article  MathSciNet  Google Scholar 

  13. Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. Proc 27th Int Conf Mach Learn:663–670

  14. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  15. Chen Y, Li C G, You C (2020) Stochastic sparse subspace clustering. Proceedings of the IEEE/CVF Conf Comput Vis Pattern Recogn:4155–4164

  16. Xu J, Xu K, Chen K, Ruan J S (2015) Reweighted sparse subspace clustering. Comput Vis Image Underst 138:25–37

    Article  Google Scholar 

  17. Dong W, Wu X J, Kittler J (2019) Sparse subspace clustering via smoothed p minimization. Pattern Recognit Lett 125:206–211

    Article  Google Scholar 

  18. Dong W, Wu X J (2019) Robust affine subspace clustering via smoothed 0-norm. Neural Process Lett 50(1):785–797

    Article  Google Scholar 

  19. Lu C, Feng J, Lin Z, Yan S (2013) Correlation adaptive subspace segmentation by trace lasso. Proc IEEE Int Conf Comput Vis:1345–1352

  20. Li C G, You C, Vidal R (2017) Structured sparse subspace clustering: a joint affinity learning and subspace clustering framework. IEEE Trans Image Process 26(6):2988–3001

    Article  MathSciNet  Google Scholar 

  21. Li C G, Vidal R (2015) Structured sparse subspace clustering: a unified optimization framework. Proc IEEE Conf Comput Vis Pattern Recogn:277–286

  22. Li C G, Vidal R (2016) A structured sparse plus structured low-rank framework for subspace clustering and completion. IEEE Trans Signal Process 64(24):6557–6570

    Article  MathSciNet  Google Scholar 

  23. Patel V M, Vidal R (2014) Kernel sparse subspace clustering. IEEE Int Conf Image Process:2849–2853

  24. Patel V M, Nguyen H V, Vidal R (2015) Latent space sparse and low-rank subspace clustering. IEEE J Sel Top Signal Process 9(4):691–701

    Article  Google Scholar 

  25. Patel V M, Nguyen H V, Vidal R (2013) Latent space sparse subspace clustering. IEEE International Conference on Computer Vision

  26. Ji P, Reid I, Garg R, et al. (2017) Adaptive low-rank kernel subspace clustering. arXiv:1707.04974v4

  27. Xiao S, Tan M, Xu D, et al. (2016) Robust kernel low-rank representation. IEEE Trans Neural Netw Learn Syst 27(11):2268–2281

    Article  MathSciNet  Google Scholar 

  28. Hu W B, Wu X J (2020) Multi-geometric sparse subspace clustering. Neural Process Lett:11

  29. Peng C, Kang Z, Xu F, Chen Y, Cheng Q (2017) Image projection ridge regression for subspace clustering. IEEE Signal Process Lett 24(7):991–995

    Article  Google Scholar 

  30. Peng C, Zhang Q, Kang Z, Chen C, Cheng Q (2020) Kernel two-dimensional ridge regression for subspace clustering. Pattern Recogn:107749

  31. Zhen L, Peng D, Wang W, Yao X (2020) Kernel truncated regression representation for robust subspace clustering. Information Sciences

  32. Li Z, Liu J, Yang Y, Zhou X, Lu H (2014) Clustering-guided sparse structural learning for unsupervised feature selection. IEEE Trans Knowl Data Eng 26(9):2138–2150

    Article  Google Scholar 

  33. Chen H, Wang W, Feng X (2018) Structured sparse subspace clustering with within-cluster grouping. Pattern Recognit 83:107–118

    Article  Google Scholar 

  34. Chen H, Wang W, Feng X, He R (2018) Discriminative and coherent subspace clustering. Neurocomputing 284:177–186

    Article  Google Scholar 

  35. Lu C, Feng J, Lin Z, Mei T, Yan S (2019) Subspace clustering by block diagonal representation. IEEE Trans Pattern Anal Mach Intell 41(2):487–501

    Article  Google Scholar 

  36. Zhang Z, Xu Y, Shao L, Yang J (2018) Discriminative block-diagonal representation learning for image recognition. IEEE Trans Neural Netw Learn Syst 29(7):3111–3125

    Article  MathSciNet  Google Scholar 

  37. Xie X, Guo X, Liu G, Wang J (2018) Implicit block diagonal low-rank representation. IEEE Trans Image Process 27(1):477– 489

    Article  MathSciNet  Google Scholar 

  38. Wang L, Huang J, Yin M, Cai R, Hao Z (2020) Block diagonal representation learning for robust subspace clustering. Inf Ences:526

  39. Georghiades A S, Belhumeur P N, Kriegman D J (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 6:643–660

    Article  Google Scholar 

  40. Samaria F S, Harter A C (1994) Parameterisation of a stochastic model for human face identification. In: Proceedings of 1994, IEEE workshop on applications of computer vision. IEEE, pp 138–142

  41. Ji P, Zhang T, Li H, Salzmann M (2017) Deep subspace clustering networks. Adv Neural Inf Process Syst:24–33

  42. Lin Z, Chen M, Wu L, Ma Y (2010) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv:1009.5055

  43. Liu M, Wang Y, Sun J, Ji Z (2020) Structured block diagonal representation for subspace clustering. Appl Intell 50(8):2523–2536

    Article  Google Scholar 

  44. Liu X, Zhu X, Li M, et al. (2019) Multiple kernel k-means with incomplete kernels. IEEE Trans Pattern Anal Mach Intell 42(5):1191–1204

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (Project Number: 2018YFB1701903) and the National Natural Science Foundation of China (Project Numbers: 61973138, 61672263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wang, Y., Sun, J. et al. Adaptive low-rank kernel block diagonal representation subspace clustering. Appl Intell 52, 2301–2316 (2022). https://doi.org/10.1007/s10489-021-02396-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02396-1

Keywords

Navigation