Skip to main content

Advertisement

Log in

MC-Net: multi-scale context-attention network for medical CT image segmentation

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The encoder-decoder CNN architecture has greatly improved CT medical image segmentation, but it encounters a bottleneck due to the loss of details in the encoding process, which limits the accuracy improvement. To address this problem, we propose a multi-scale context-attention network (MC-Net). The key idea is to explore the useful information across multiple scales and the context for the segmentation of objects of medical interest. Through the introduction of multi-scale and context-attention modules, MC-Net gains the ability to extract local and global semantic information around targets. To further improve the segmentation accuracy, we weight the pixels depending on whether they belong to targets. Many experiments on a lung dataset and a bladder dataset demonstrate that the proposed MC-Net outperforms state-of-the-art methods in terms of accuracy, sensitivity, the area under the receiver operating characteristic curve and the Dice score.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Soliman A et al (2017) Accurate Lungs Segmentation on CT Chest Images by Adaptive Appearance-Guided Shape Modeling. IEEE Trans Med Imaging 36(1):263–276

    Article  Google Scholar 

  2. Song J et al (2016) Lung Lesion Extraction Using a Toboggan Based Growing Automatic Segmentation Approach. IEEE Trans Med Imaging 35(1):337–353

    Article  Google Scholar 

  3. Akter O, Moni MA, Islam MM et al (2020) Lung cancer detection using enhanced segmentation accuracy. Applied https://doi.org/10.1007/s10489-020-02046-y

  4. Jiang J et al (2019) Multiple Resolution Residually Connected Feature Streams for Automatic Lung Tumor Segmentation From CT Images. IEEE Trans Med Imaging 38(1):134–144

    Article  Google Scholar 

  5. Fehri H, Gooya A, Lu Y, Meijering E, Johnston SA, Frangi AF (2019) Bayesian Polytrees With Learned Deep Features for Multi- Class Cell Segmentation. IEEE Trans Image Process 28(7):3246– 3260

    Article  MathSciNet  Google Scholar 

  6. Ronneberger O, Fischer P, Brox TN (2015) Convolutional networks for biomedical image segmentation. In: Paper presented at International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, pp 234–241

  7. Drozdzal M, Chartrand G, Orontsov EV, Shakeri M, Jorioc LD, Tang A et al (2018) Learning normalized inputs for iterative estimation in medical image segmentation. Med Image Anal 44:1–13

    Article  Google Scholar 

  8. Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380

    Article  Google Scholar 

  9. Ben Abdallah M, Azar A, Guedri H et al (2018) Noise-estimation-based anisotropic diffusion approach for retinal blood vessel segmentation. Neural Comput Appl 29:159–180

    Article  Google Scholar 

  10. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118

    Article  Google Scholar 

  11. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images. IEEE Trans Med Imaging 35(5):1240–1251

    Article  Google Scholar 

  12. Tuan TM, Ngan TT, Son LH (2016) A novel semi-supervised fuzzy clustering method based on interactive fuzzy satisficing for dental x-ray image segmentation. Appl Intell 45:402–428

    Article  Google Scholar 

  13. Zhang S, You Z, Wu X (2019) Plant disease leaf image segmentation based on superpixel clustering and EM algorithm. Neural Comput Appl 31:1225–1232

    Article  Google Scholar 

  14. Cheng H, Zhang X, Yu J (2016) AC-coefficient histogram-based retrieval for encrypted JPEG images. Multimed Tools Appl 75:13791–13803

    Article  Google Scholar 

  15. Satapathy SC, Sri Madhava Raja N, Rajinikanth V et al (2018) Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput Appl 29:1285–1307

    Article  Google Scholar 

  16. Punarselvam E, Suresh P (2019) Investigation on human lumbar spine MRI image using finite element method and soft computing techniques. Clust Comput 22:13591–13607

    Article  Google Scholar 

  17. Liu L, Chen J, Fieguth P et al (2019) From BoW to CNN: Two Decades of Texture Representation for Texture Classification. Int J Comput Vis 127:74–109

    Article  Google Scholar 

  18. Hannane R, Elboushaki A, Afdel K et al (2016) An efficient method for video shot boundary detection and keyframe extraction using SIFT-point distribution histogram. Int J Multimed Inf Retriev 5:89–104

    Article  Google Scholar 

  19. Chen X, Pan L (2018) A Survey of Graph Cuts/Graph Search Based Medical Image Segmentation. IEEE Rev Biomed Eng 11:112–124

    Article  Google Scholar 

  20. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of IEEE Int. Conf. Comput. Vis. Pattern Recognit(CVPR), pp 3431–3440

  21. Chen L, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848

    Article  Google Scholar 

  22. Milletari F, Navab N, Ahmadi SA (2016) V-Net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision(3DV). IEEE, pp 565–571

  23. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In: 4th Deep Learning in Medical Image Analysis (DLMIA) Workshop, Granada, DLMIA 2018, LNCS, vol 11045, pp 3–11

  24. Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B et al (2019) Attention gated networks: Learning to leverage salient regions in medical images. Med Image Anal 53:197–207

    Article  Google Scholar 

  25. Alom MZ, Yakopcic C, Taha TM, Asari VK (2018) Nuclei Segmentation with Recurrent Residual Convolutional Neural Networks based U-Net (R2U-Net). NAECON 2018 - IEEE National Aerospace and Electronics Conference, pp 228–233

  26. Xiao X, Lian S, Luo Z, Li S (2018) Weighted Res-UNet for High-Quality Retina Vessel Segmentation. In: 2018 9th International Conference on Information Technology in Medicine and Education (ITME). IEEE, pp 327–331

  27. Guan S, Khan AA, Sikdar S, Chitnis PV (2020) Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal. IEEE J Biomed Health Inf 24(2):568–576

    Article  Google Scholar 

  28. Ibtehaz N, Rahman MS (2020) MultiResUNet: Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation. Neural Netw 121:74–87

    Article  Google Scholar 

  29. Zhao H, Shi J, Qi X, Wang X, Jia J (2019) Pyramid Scene Parsing Network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, pp 6230– 6239

  30. Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H (2018) Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y (eds), vol 11211. Springer, Cham, pp 833– 851

  31. He K, Gkioxari G, Dollr P, Girshick R (2017) Mask R-CNN. In IEEE International Conference on Computer Vision (ICCV), Venice, pp 2980–2988

  32. Szegedy C et al (2015) Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, pp 1–9

  33. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the Inception Architecture for Computer Vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, pp 2818–2826

  34. Vo DM, Lee SW (2018) Semantic image segmentation using fully convolutional neural networks with multi-scale images and multi-scale dilated convolutions. Multimed Tools Appl 77:18689– 18707

    Article  Google Scholar 

  35. Jiang Y, Tan N, Peng T, Zhang H (2019) Retinal Vessels Segmentation Based on Dilated Multi-Scale Convolutional Neural Network. IEEE Access 7:76342–76352

    Article  Google Scholar 

  36. Liu Y, Xu C, Chen Z et al (2020) Deep Dual-Stream Network with Scale Context Selection Attention Module for Semantic Segmentation. Neural Process Lett 51:2281–2299

    Article  Google Scholar 

  37. Zhu H, Wang B, Zhang X et al (2020) Semantic image segmentation with shared decomposition convolution and boundary reinforcement structure. Appl Intell 50:2676–2689

    Article  Google Scholar 

  38. Gu Z, Cheng J, Fu H, Zhou K, Hao H, Zhao Y et al (2019) CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans Med Imaging 38(10):2281–2292

    Article  Google Scholar 

  39. Hu S, Zhang J, Xia Y (2020) Boundary-Aware Network for Kidney Tumor Segmentation. In: Liu M, Yan P, Lian C, Cao X (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science, vol 12436. Springer, Cham, pp 189–198

  40. Feng S et al (2020) CPFNet: Context Pyramid Fusion Network for Medical Image Segmentation. IEEE Trans Med Imaging 39(10):3008–3018

    Article  Google Scholar 

  41. Zhang J, Xie Y, Wang Y, Xia Y (2020) Inter-slice Context Residual Learning for 3D Medical Image Segmentation. In: IEEE Transactions on Medical Imaging(Early Access), pp 1–1

  42. Zhang Q, Jiang Z, Lu Q, Han J, Zeng Z, Gao S, Men A (2020) Split to Be Slim: An Overlooked Redundancy in Vanilla Convolution. In International Joint Conference on Artificial Intelligence 2020 (IJCAI), Yokohama. arXiv:2006.12085

  43. Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2016) Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. arXiv:1602.07261

  44. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  45. Xia H, Sun W, Song S et al (2020) Md-Net: Multi-scale Dilated Convolution Network for CT Images Segmentation. In: Neural Process Letters, vol 51. Springer. pp 2915–2927

  46. Lin M, Chen Q, Yan S (2013) Network In Network. arXiv:1312.4400

  47. Wang G et al (2020) A Noise-Robust Framework for Automatic Segmentation of COVID-19 Pneumonia Lesions From CT Images. IEEE Trans Med Imaging 39(8):2653–2663

    Article  Google Scholar 

  48. Sudre CH, Li W, Vercauteren T, Ourselin S, Jorge Cardoso M et al (2017) Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations. In: Cardoso M (ed) Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. DLMIA 2017, ML-CDS 2017. Lecture Notes in Computer Science, vol 10553. Springer, Cham, pp 240–248

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxiang Song.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Natural Science Foundation of China under Grant 61762014, in part by the Science and Technology Project of Guangxi under Grant 2018GXNSFAA281351, and in part by the Innovation Project of Guangxi Graduate Education under Grant YCSW2021096.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, H., Ma, M., Li, H. et al. MC-Net: multi-scale context-attention network for medical CT image segmentation. Appl Intell 52, 1508–1519 (2022). https://doi.org/10.1007/s10489-021-02506-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02506-z

Keywords

Navigation