Skip to main content
Log in

A network method to identify the dynamic changes of the data flow with spatio-temporal feature

  • Published:
Applied Intelligence Aims and scope Submit manuscript

A Correction to this article was published on 07 October 2021

This article has been updated

Abstract

Mining on the spatio-temporal data based on network method, is advantage to explore the dynamic changes of mobile communication system from a new perspective. The mobile communication system can be understood as a structure composed of interdependent base stations. The interaction between base stations can be evaluated by the similarity of base station data flow. The constructed network can reveal the interaction structure of human mobile communication activities. Three correlation networks are constructed. In Pearson correlation network, the link represents that the dynamic change of data flow has linear similarity. In Spearman correlation network and Mutual correlation network, that represents monotonic similarity and nonlinear similarity. The networks have large average clustering coefficient. It indicates that the structure of the base station system is stable. In base station system, the nonlinear similarity is stronger than the linear similarity between the time series of data flow. Furthermore, there are greater number nodes with the “bridge” role in the Pearson correlation network. The base stations corresponding to these nodes play an important role in information transmission. Constructing links by the similarity of base station data flow, the potential connectivity between base stations can be found, and the information of remote interaction in mobile communication system can be obtained. The geographical distribution can present the spatial variation of data flow time series correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Atluri G, Karpatne A, Kumar V (2018) Spatio-temporal data mining: a survey of problems and methods. ACM Comput Surv 51(4):83. https://doi.org/10.1145/3161602

    Article  Google Scholar 

  2. Lotfi N, Javaherian M, Kaki B, Darooneh AH, Safari H (2020) Ultraviolet solar flare signatures in the framework of complex network. Chaos 30(4):043124. https://doi.org/10.1063/1.5129433

    Article  MathSciNet  Google Scholar 

  3. Agrawal S, Steinbach M, Boley D, Chatterjee S, Atluri G, The Dang A, Liess S, Kumar V (2020) Mining novel multivariate relationships in time series data using correlation networks. IEEE Trans Knowl Data Eng 32(9):1798–1811. https://doi.org/10.1109/TKDE.2019.2911681

    Article  Google Scholar 

  4. Hartman D, Hlinka J, Palus M (2011) The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks. Chaos 21(1):013119. https://doi.org/10.1063/1.3553181

    Article  MathSciNet  MATH  Google Scholar 

  5. Rangaprakash D (2017) Binarized brain connectivity: a novel autocorrelation based iterative synchronization technique. IEEE Trans Signal Inf Process over Netw 3(4):660–668. https://doi.org/10.1109/TSIPN.2017.2672400

    Article  MathSciNet  Google Scholar 

  6. Feng QY, Dijkstra H (2014) Are North Atlantic multidecadal SST anomalies westward propagating. Geophys Res Lett 41(2):541–546. https://doi.org/10.1002/2013GL058687

    Article  Google Scholar 

  7. Donges JF, Zou Y, Marwan N, Kurths J (2009) Complex networks in climate dynamics. Eur Phys J Special Topics 174(1):157–179. https://doi.org/10.1140/epjst/e2009-01098-2

    Article  Google Scholar 

  8. Marwan N, Kurths J (2015) Complex network based techniques to identify extreme events and (sudden) transitions in spatio-temporal systems. Chaos 25(9):097609. https://doi.org/10.1063/1.4916924

    Article  MathSciNet  Google Scholar 

  9. Konapala G, Mishra A (2017) Review of complex networks application in hydroclimatic extremes with an implementation to characterize spatio-temporal drought propagation in continental USA. J Hydrol 555:600–620. https://doi.org/10.1016/j.jhydrol.2017.10.033

    Article  Google Scholar 

  10. Ozturk U, Marwan N, Korup O, Saito H, Agarwal A, Grossman MJ, Zaiki M, Kurths J (2018) Complex networks for tracking extreme rainfall during typhoons. Chaos 28(7):075301. https://doi.org/10.1063/1.5004480

    Article  MathSciNet  Google Scholar 

  11. Sun A Y, Xia Y, Caldwell T G, et al. Patterns of precipitation and soil moisture extremes in Texas, US: a complex network analysis. Advances in Water Resources, 2018, 112(FEB.): 203–213. DOI:https://doi.org/10.1016/j.advwatres.2017.12.019

  12. Yang W, Yang H, Yang D (2019) Identification of homogeneous regions in terms of flood seasonality using a complex network approach. J Hydrol 576:726–735. https://doi.org/10.1016/j.jhydrol.2019.06.082

    Article  Google Scholar 

  13. Feng QY, Dijkstra HA (2017) Climate network stability measures of El Niño variability. Chaos (S1054–1500), 27(3): 035801. DOI:https://doi.org/10.1063/1.4971784

  14. Lu ZH, Yuan NM, Chen L et al (2020) On the impacts of El Nio events: a new monitoring approach using complex network analysis. Geophys Res Lett 47(6):e2019GL086533. https://doi.org/10.1029/2019GL086533

    Article  Google Scholar 

  15. Chen X, Hao A, Li Y (2020) The impact of financial contagion on real economy-an empirical research based on combination of complex network technology and spatial econometrics model. PLoS One 15(3):e0229913. https://doi.org/10.1371/journal.pone.0229913

    Article  Google Scholar 

  16. Yan Y, Wu B, Tian T, Zhang H (2020) Development of stock networks using part mutual information and Australian stock market data. Entropy 22(7):773. https://doi.org/10.3390/e22070773

    Article  MathSciNet  Google Scholar 

  17. He H, Dai S (2021) Effectiveness of price limit on stock mrket network: a time-migrated DCCA approach. Complexity 2021:3265843. https://doi.org/10.1155/2021/3265843

    Article  Google Scholar 

  18. Yang X, Wen S, Liu Z, Li C, Huang C (2019) Dynamic properties of foreign exchange complex network. Mathematics 7(9):832. https://doi.org/10.3390/math7090832

    Article  Google Scholar 

  19. You X, Wang C, Huang J et al (2021) Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inf Sci 64(1):110301. https://doi.org/10.1007/s11432-020-2955-6

    Article  Google Scholar 

  20. Wang LN, Cheng YY, Zang CR (2019) A symbolized time series network based on seasonal-trend-loess method. Acta Phys Sin 68(23):238901. https://doi.org/10.7498/aps.68.20190794

    Article  Google Scholar 

  21. Enami S, Shiomoto K (2019) Spatio-temporal human mobility prediction based on trajectory data mining for resource management in mobile communication networks. 2019 IEEE 20th International Conference on High Performance Switching and Routing. IEEE, Xi’an, China. DOI: https://doi.org/10.1109/HPSR.2019.8808106

  22. Fu T (2011) A review on time series data mining. Eng Appl Artif Intell 24(1):164–181. https://doi.org/10.1016/j.engappai.2010.09.007

    Article  Google Scholar 

  23. Riccadonna S, Jurman G, Visintainer R, Filosi M, Furlanello C (2016) DTW-MIC Coexpression networks from time-course data. PLoS One 11(3):e0152648. https://doi.org/10.1371/journal.pone.0152648

    Article  Google Scholar 

  24. Alzate C, Sinn M (2013) Improved electricity load forecasting via kernel spectral clustering of smart meters. 2013 IEEE 13th international conference on data mining, IEEE, Dallas TX, USA DOI:https://doi.org/10.1109/ICDM.2013.144

  25. Carpi LC, Saco PM, Rosso OA, Ravetti MG (2012) Structural evolution of the tropical Pacific climate network. Eur Phys J B 85(11):1–7. https://doi.org/10.1140/epjb/e2012-30413-7

    Article  Google Scholar 

  26. García RA, Martí AC, Cabeza C, Rubido N (2020) Small-worldness favours network inference in synthetic neural networks. Sci Rep 10(1):2296. https://doi.org/10.1038/s41598-020-59198-7

    Article  Google Scholar 

  27. Cao G, Zhang Q, Li Q (2017) Causal relationship between the global foreign exchange market based on complex networks and entropy theory. Chaos 99:36–44. https://doi.org/10.1016/j.chaos.2017.03.039

    Article  MathSciNet  Google Scholar 

  28. Hlinka J, Hartman D, Jajcay N, Tomeček D, Tintěra J, Paluš M (2017) Small-world bias of correlation networks: from brain to climate. Chaos 27(3):035812. https://doi.org/10.1063/1.4977951

    Article  Google Scholar 

  29. Taban E, Fahad S (2018) Fast-GPU-PCC: a GPU-based technique to compute pairwise Pearson's correlation coefficients for time series data-fMRI study. High-throughput 7(2):11. https://doi.org/10.3390/ht7020011

    Article  Google Scholar 

  30. Soroosh A, Stephen MS, Thomas EN (2019) Effective degrees of freedom of the Pearson's correlation coefficient under autocorrelation. NeuroImage. https://doi.org/10.1101/453795

  31. Spearman C (1907) Demonstration of formulae for true measurement of correlation. Am J Psychol 18(2):161–169. https://doi.org/10.2307/1412408

    Article  Google Scholar 

  32. Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15(1):72–101. https://doi.org/10.2307/1412159

    Article  Google Scholar 

  33. Fraser AM, Swinney HL (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33(2):1134–1140. https://doi.org/10.1103/PhysRevA.33.1134

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang LN, Wang K, Shen JL (2020) Weighted complex networks in urban public transportation: modeling and testing. Physica A 545:123498. https://doi.org/10.1016/j.physa.2019.123498

    Article  Google Scholar 

  35. Ding YM, Fang JF, Zhou B et al (2014) Random clique evolving network model and their communicability. Scientia Sinica Physica, Mechanica & Astronomica 44(3):299–304. https://doi.org/10.1360/SSPMA2013-00083

    Article  Google Scholar 

  36. Newman MEJ (2011) Networks: an introduction. New York: Oxford University Press 117–122 and 126–128. DOI:https://doi.org/10.1093/acprof:oso/9780199206650.001.0001

Download references

Acknowledgments

We appreciate editor and reviewers for their positive and constructive comments and suggestions. This work was supported by the Natural Science Foundation of Inner Mongolia [grant number 2018LH01012]; and partly supported by the National Natural Science Foundation of China [grant numbers 11861049].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Na Wang.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The raw data of Eq. (8) is as follows. The spatio-temporal sequence matrix D consists of three column vectors: α1, α2, α3. Data in three columns are time series of data flow at three base stations. The length of each time series is 144.

α1 = (4.2254, 6.9536, 0.1331, 0.1070, 0.1617, 0.1622, 0.5675, 9.7144, 7.4732, 47.8609, 19.0116, 191.3641, 5.4373, 15.9058, 14.1898, 4.7601, 4.1999, 6.1638, 5.9149, 7.1773, 8.1560, 14.6302, 2.3700, 71.2440, 3.4324, 0.2110, 13.8395, 0.6696, 8.8676, 1.0834, 7.5824, 10.0579, 2.3766, 17.5327, 13.3228, 26.4965, 6.5343, 19.4150, 4.3120, 10.0341, 9.7108, 10.3062, 13.0456, 27.2355, 37.9095, 12.9162, 26.3166, 25.0704, 0.1313, 0.0531, 0.7245, 0.0371, 0.1500, 0.1850, 6.1619, 17.1917, 26.6532, 12.4903, 7.1840, 5.6126, 9.5235, 13.7192, 21.5468, 16.8919, 7.3776, 30.8557, 6.9697, 18.1500, 25.7069, 4.4798, 45.2360, 5.8823, 3.1715, 0.0790, 2.7104, 2.7899, 0.5192, 0.1058, 0.3142, 5.1533, 8.1087, 5.5130, 25.8272, 13.9438, 5.1281, 15.7147, 3.0741, 7.7981, 2.4721, 15.1025, 9.2804, 4.8258, 5.6095, 1.3536, 5.1127, 2.2506, 0.1021, 0.0626, 0.0281, 0.9588, 0.0964, 0.1636, 3.4632, 9.0962, 3.4512, 3.6361, 7.6806, 12.5249, 8.6885, 0.8406, 7.0643, 5.3448, 3.0835, 10.0879, 2.7440, 22.8063, 4.5731, 5.1853, 5.4473, 3.3129, 16.2445, 0.0430, 0.2003, 0.0690, 0.1251, 0.1643, 4.3230, 0.8983, 4.7684, 8.5058, 10.3970, 10.8331, 17.6634, 5.0980, 8.5983, 6.7927, 195.5040, 25.9908, 16.9744, 68.6794, 15.2118, 13.7123, 2.3288, 17.4739)T.

α2 = (9.6017, 0.9453, 6.7698, 0.2454, 0.4047, 0.0367, 0.3699, 7.4782, 23.5142, 12.5177, 6.7492, 3.3458, 363.2937, 20.1205, 6.4980, 7.3425, 9.1083, 10.4926, 15.4130, 12.9427, 6.6487, 3.6176, 4.2620, 9.0877, 1.1027, 0.2513, 1.8489, 0.0872, 0.0814, 0.0934, 0.3445, 1.8966, 6.7795, 3.4730, 3.3304, 9.6402, 8.5818, 12.3951, 2.6853, 14.8838, 9.0342, 5.3071, 16.9290, 4.4918, 4.0576, 36.8136, 9.0119, 1.7865, 71.5539, 143.5127, 90.9715, 4.6031, 0.9156, 0.2180, 0.0823, 1.5460, 2.9026, 5.9645, 3.5715, 10.7770, 5.9761, 28.7818, 17.2549, 18.2050, 11.4658, 6.7675, 4.9894, 6.7317, 3.9084, 20.3362, 9.6532, 13.2448, 14.1717, 0.6698, 0.0780, 0.9675, 0.0533, 0.5611, 0.9510, 0.8979, 1.1224, 7.4890, 4.7928, 4.4116, 6.3022, 9.6669, 4.8543, 43.9041, 8.2797, 9.2219, 13.6541, 6.7986, 10.3338, 8.3197, 6.8527, 12.0417, 42.0184, 1.6449, 0.5611, 0.3873, 0.2633, 0.1250, 0.1518, 0.5115, 8.6398, 25.4342, 24.3789, 11.3780, 15.6235, 27.3627, 7.6459, 12.0722, 14.6253, 11.1348, 12.7810, 11.2493, 4.6949, 7.4506, 6.1625, 93.5560, 4.4494, 2.5873, 1.4874, 0.3666, 0.5021, 0.7570, 0.3488, 1.8010, 0.9802, 9.6263, 1.6587, 8.2196, 6.7500, 59.7954, 7.6097, 4.7948, 3.6051, 31.7453, 18.5544, 12.7098, 6.6940, 12.7846, 26.7312, 37.5261)T.

α3 = (14.7685, 3.6363, 0.0527, 0.1009, 0.0774, 0.1440, 0.0640, 0.5845, 2.0513, 30.5791, 7.9186, 16.4403, 6.2237, 13.3395, 3.5927, 8.0461, 19.8523, 11.7937, 21.8353, 11.4439, 2.8482, 2.3336, 4.0990, 6.2345, 0.0626, 0.2762, 0.0327, 0.0930, 0.0493, 0.0307, 0.1528, 3.4544, 7.9903, 4.9159, 32.6839, 8.5307, 24.6034, 9.8889, 5.6112, 20.6144, 11.3688, 12.1781, 31.1372, 14.7879, 1.0073, 2.7825, 0.9285, 0.8109, 0.0412, 0.1562, 0.0209, 0.1953, 0.0192, 0.5896, 0.3303, 1.1377, 6.5087, 10.8039, 15.9944, 12.2080, 13.6918, 2.9069, 6.1732, 12.9291, 10.3150, 55.0751, 66.8895, 18.4058, 4.1239, 7.0076, 12.4804, 6.4458, 1.1070, 1.3128, 0.1642, 0.0433, 0.0277, 0.0366, 0.2406, 0.6828, 3.9944, 4.7312, 57.0462, 17.6360, 12.8582, 7.7218, 20.1681, 10.9176, 21.5793, 46.9833, 23.2448, 18.8866, 5.1837, 24.3867, 7.0820, 0.9336, 0.1391, 0.1931, 0.1684, 0.2833, 0.4699, 0.0847, 0.5281, 0.5745, 16.7977, 3.0713, 13.2144, 40.2816, 8.7383, 11.7499, 17.2615, 7.8832, 37.3397, 34.6834, 20.2066, 10.4823, 14.4809, 5.7378, 3.1332, 1.6836, 0.2498, 0.6798, 0.0389, 0.0722, 0.0276, 0.1606, 1.1171, 6.0699, 9.4755, 13.9211, 15.7776, 9.6734, 13.2413, 38.2821, 70.6513, 166.0539, 290.5563, 141.8450, 13.9289, 10.8143, 0.8087, 5.9432, 0.8713, 0.9620)T.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LN., Tan, GM. & Zang, CR. A network method to identify the dynamic changes of the data flow with spatio-temporal feature. Appl Intell 52, 5584–5593 (2022). https://doi.org/10.1007/s10489-021-02591-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02591-0

Keywords

Navigation