Skip to main content
Log in

Multilevel segmentation of Hippocampus images using global steered quantum inspired firefly algorithm

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Microscopic Image segmentation has a crucial role in detecting and diagnosing numerous critical diseases like Alzheimer’s disease, Kidney disease, Cancer, many infectious diseases, etc. Precise segmentation of hippocampus microscopic images is a prerequisite for analyzing and interpreting the brain tissues. A few metaheuristic-based multilevel image segmentation methods are found in the literature for the same. In this work, an enhanced firefly algorithm-based image segmentation method has been proposed to achieve a good quality segmentation. The proposed algorithm utilizes the classical firefly algorithm’s movement operation along with the concept of quantum superposition and quantum update operation. In this algorithm, the movements of quantum fireflies have been modeled based on two strategies: firstly, the less bright fireflies move towards the comparatively brighter ones and secondly, quantum fireflies are updated according to the global optimum by the quantum update operation. This global steered Quantum Inspired Firefly Algorithm (QIFA) has been proposed and used for the multilevel hippocampus image segmentation considering correlation and structural similarity index as objective functions. In order to validate the quality of segmentation, the F-score values with respect to the segmented images have been reported. The proposed algorithm’s performance has been compared with seven other metaheuristic algorithms. The experimental results establish that the proposed algorithm is effective in producing good quality segmentation of hippocampus images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Cardoso JS, Domingues I, Amaral I, Moreira I, Passarinho P, Comba JS, Correia R, Cardoso MJ (2010) Pectoral muscle detection in mammograms based on polar coordinates and the shortest path. In: Proc Intl Conf Eng Med Biol, pp. 4781–4784. https://doi.org/10.1109/iembs.2010.5626634

  2. Falcao AX, Udupa JK, Miyazawa FK (2000) An ultra-fast user-steered image segmentation paradigm: live wire on the fly. IEEE Transact Med Imaging 19(1):55–62. https://doi.org/10.1109/42.832960

    Article  Google Scholar 

  3. Cook MJ, Fish DR, Shorvon SD, Straughan K, Stevens JM (1992) Hippocampal volumetric and morphometric studies in frontal and temporal lobe epilepsy. Brain 115(4):1001–1015. https://doi.org/10.1093/brain/115.4.1001

    Article  Google Scholar 

  4. Cendes F, Andermann F, Gloor P, Lopes-Cendes I, Andermann E, Melanson D, Jones-Gotman M, Robitaille Y, Evans A, Peters T (1993) Atrophy of mesial structures in patients with temporal lobe epilepsy: cause or consequence of repeated seizures. Ann Neurol 34(6):795–801. https://doi.org/10.1002/ana.410340607

    Article  Google Scholar 

  5. Jackson GD, Berkovic SF, Duncan JS, Connelly A (1993) Optimizing the diagnosis of hippocampal sclerosis using MR imaging, Am J Neuroradiol 14(3):753–762

  6. Hosseini MP, Nazem-Zadeh MR, Mahmoudi F, Ying H, Soltanian-Zadeh H (2014) Support vector machine with nonlinear-kernel optimization for lateralization of epileptogenic hippocampus in MR images. In: Proc Intl Conf of the IEEE Engineering in Medicine and Biology Society, pp. 1047–1050

  7. Scheenstra AE, Ven RCVD, Weerd LVD, Maagdenberg AMVD, Dijkstra J, Reiber JH (2009) Automated segmentation of in vivo and ex vivo mouse brain magnetic resonance images. Mol Imaging 8(1):7290–2009. https://doi.org/10.2310/7290.2009.00004

    Article  Google Scholar 

  8. Jack CR, Sharbrough FW, Twomey CK, Cascino GD, Hirschorn KA, Marsh WR, Zinsmeister AR, Scheithauer B (1990) Temporal lobe seizures: lateralization with mr volume measurements of the hippocampal formation. Radiology 175(2):423–429. https://doi.org/10.1148/radiology.175.2.2183282

    Article  Google Scholar 

  9. Watson C, Andermann F, Gloor P, Jones-Gotman M, Peters T, Evans A, Olivier A, Melanson D, Leroux G (1992) Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging. Neurology 42(9):1743–1743. https://doi.org/10.1212/wnl.42.9.1743

    Article  Google Scholar 

  10. Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 56(3):907–922. https://doi.org/10.1016/j.neuroimage.2011.02.046

    Article  Google Scholar 

  11. Chupin M, Hammers A, Bardinet E, Colliot O, Liu RSN, Duncan JS, Garnero L, Lemieux L (2007) Fully automatic segmentation of the hippocampus and the amygdala from MRI using hybrid prior knowledge. In: Proc Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 875-882. https://doi.org/10.1007/978-3-540-75757-3_106

  12. Mcdonald CR, Hagler DJ, Ahmadi ME, Tecoma E, Iragui V, Dale AM, Halgren E (2008) Subcortical and cerebellar atrophy in mesial temporal lobe epilepsy revealed by automatic segmentation. Epilepsy Res 79(2–3):130138. https://doi.org/10.1016/j.eplepsyres.2008.01.006

    Article  Google Scholar 

  13. Pell GS, Briellmann RS, Pardoe H, Abbott DF, Jackson GD (2008) Composite voxel based analysis of volume and t2 relaxometry in temporal lobe epilepsy. NeuroImage 39(3):11511161–11511161. https://doi.org/10.1016/j.neuroimage.2007.09.061

    Article  Google Scholar 

  14. Bonilha L, Halford JJ, Rorden C, Roberts DR, Rumboldt Z, Eckert MA (2009) Automated mri analysis for identification of hippocampal atrophy in temporal lobe epilepsy. Epilepsia 50(2):228233–228233. https://doi.org/10.1111/j.1528-1167.2008.01768.x

    Article  Google Scholar 

  15. Wu X, Shah S (2008) Comparative analysis of cell segmentation using absorption and color images in fine needle aspiration cytology. In: Proc IEEE Intl Conf on Systems, Man and Cybernetics, pp. 271–276. https://doi.org/10.1109/icsmc.2008.4811287

  16. Hrebie M, Ste P, Nieczkowski T, Obuchowicz A (2008) Segmentation of breast cancer fine needle biopsy cytological images. Intl J Appl Mathematics Comput Sci 18(2):159–170. https://doi.org/10.2478/v10006-008-0015-x

    Article  MATH  Google Scholar 

  17. Choudhury A, Samanta S, Dey N, Ashour AS, Blas-Timar D, Gospodinov M, Gospodinova E (2015) Microscopic Image Segmentation Using Quantum Inspired Evolutionary Algorithm. Journal of Advanced Microscopy Research 10(3):164-173. https://doi.org/10.1166/jamr.2015.1257

  18. Chakraborty S, Chatterjee S, Dey N, Ashour AS, Ashour AS, Shi F, Mali K (2017) Modified cuckoo search algorithm in microscopic image segmentation of hippocampus. Microsc Res Tech 80(10):10511072–10511072. https://doi.org/10.1002/jemt.22900

    Article  Google Scholar 

  19. Oliva D, Elaziz MA, Hinojosa S (2019) Multilevel thresholding for image segmentation based on metaheuristic algorithms. In: Metaheuristic Algorithms for Image Segmentation: Theory and Applications. Studies in Computational Intelligence, vol 825, pp. 59-69. https://doi.org/10.1007/978-3-030-12931-6_6

  20. Manikandan S, Ramar K, Iruthayarajan MW, Srinivasagan K (2014) Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm. Measurement 47:558–568. https://doi.org/10.1016/j.measurement.2013.09.031

    Article  Google Scholar 

  21. Dey S, Saha I, Maulik U, Bhattacharyya S (2013) New quantum inspired meta-heuristic methods for multi-level thresholding. In: Intl Conf on advances in Computing, Communications and Informatics (ICACCI), pp. 1236–1240. https://doi.org/10.1109/ICACCI.2013.6637354

  22. Li Y, Bai X, Jiao L, Xue Y (2017)Partitioned-cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Appl Soft Comput 56:345–356. https://doi.org/10.1016/j.asoc.2017.03.018

    Article  Google Scholar 

  23. Sayed GI, Hassanien AE (2017)Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast cancer histology images. Appl Intell 47(2):397–408. https://doi.org/10.1007/s10489-017-0897-0

    Article  Google Scholar 

  24. Tang K, Xiao X, Wu J, Yang J, Luo L (2017) An improved multilevel thresholding approach based modified bacterial foraging optimization. Appl Intell 46(1):214–226. https://doi.org/10.1007/s10489-016-0832-9

    Article  Google Scholar 

  25. Mohanty F, Rup S, Dash B, Majhi B, Swamy MNS (2019) A computer-aided diagnosis system using Tchebichef features and improved grey wolf optimized extreme learning machine. Appl Intell 49(3):983–1001. https://doi.org/10.1007/s10489-018-1294-z

    Article  Google Scholar 

  26. Osuna-Enciso V, Cuevas E, Sossa H (2013) A comparison of nature inspired algorithms for multi-threshold image segmentation. Expert Syst Appl 40(4):1213–1219. https://doi.org/10.1016/j.eswa.2012.08.017

    Article  Google Scholar 

  27. Dey N (Ed.) (2018) Advancements in Applied Metaheuristic Computing. IGI Global. https://doi.org/10.4018/978-1-5225-4151-6

  28. Yang S (2009) Firefly algorithms for multimodal optimization. In: Watanabe O., Zeugmann T. (Eds.) Stochastic Algorithms: Foundations and Applications, vol 5792, pp. 169–178. https://doi.org/10.1007/978-3-642-04944-6_14

  29. Yang XS (2008)Nature-inspired Metaheuristic algorithms, Luniver Press

  30. Ayas S, Dogan H, Gedikli E, Ekinci M (2015) Microscopic image segmentation based on firefly algorithm for detection of tuberculosis bacteria. In: Proc Signal Processing and Communications Applications Conference (SIU), pp. 851–854. https://doi.org/10.1109/siu.2015.7129962

  31. Horng M, Jiang T (2010) Multilevel image thresholding selection based on the firefly algorithm. In: 7th Intl Conf on Ubiquitous Intelligence Computing and 7th Intl Conf on Autonomic Trusted Computing, pp. 58–63. https://doi.org/10.1109/UIC-ATC.2010.47.

  32. Hassanzadeh T, Vojodi H, Moghadam AME (2011) An image segmentation approach based on maximum variance intra-cluster method and firefly algorithm. In: 7th Intl Conf on Natural Computation, pp. 1817–1821.  https://doi.org/10.1109/ICNC.2011.6022379

  33. Chen K, Zhou Y, Zhang Z, Dai M, Chao Y, Shi J (2016) Multilevel image segmentation based on an improved firefly algorithm. Math Probl Eng 2016:1–12. https://doi.org/10.1155/2016/1578056

    Article  Google Scholar 

  34. Brajevic I, Tuba M (2014) Cuckoo search and firefly algorithm applied to multilevel image Thresholding. In: Yang X-S(ed) Cuckoo search and firefly algorithm, vol 516. Springer International Publishing, Cham, pp 115–139. https://doi.org/10.1007/978-3-319-02141-6_6

    Chapter  Google Scholar 

  35. Rajinikanth V, Raja KKNSM (2017) Firefly algorithm assisted segmentation of tumor from brain MRI using tsallis function and markov random field. J Control Eng Appl Informatics 19(3):97–106

  36. Rahebi J, Hardala F (2016) A new approach to optic disc detection in human retinal images using the firefly algorithm. Med Biol Eng Comput 54(2–3):453–461. https://doi.org/10.1007/s11517-015-1330-7

    Article  Google Scholar 

  37. Filipczuk P, Wojtak W, Obuchowicz A (2012) Automatic Nuclei Detection on Cytological Images Using the Firefly Optimization Algorithm. In: Information Technologies in Biomedicine, vol 7339, pp. 85–92. https://doi.org/10.1007/978-3-642-31196-3_9

  38. Pei W, Huayu G, Zheqi Z, Meibo L (2019) A Novel Hybrid Firefly Algorithm for Global Optimization. In: IEEE 4th Intl Conf on computer and communication systems (ICCCS), pp. 164–168. https://doi.org/10.1109/CCOMS.2019.8821670

  39. Meraihi Y, Acheli D, Cherif AR, Mahseur M (2017) A quantum-inspired binary firefly algorithm for QoS multicast routing. Int J Met 6(4):309. https://doi.org/10.1504/IJMHEUR.2017.086980

    Article  Google Scholar 

  40. Bodha KD, Yadav VK, Mukherjee V (2020) Formulation and application of quantum inspired tidal firefly technique for multiple-objective mixed cost-effective emission dispatch. Neural Comput & Applic 32(13):9217–9232. https://doi.org/10.1007/s00521-019-04433-0

    Article  Google Scholar 

  41. Zouache D, Nouioua F, Moussaoui A (2016)Quantum-inspired firefly algorithm with particle swarm optimization for discrete optimization problems. Soft Comput 20(7):2781–2799. https://doi.org/10.1007/s00500-015-1681-x

    Article  Google Scholar 

  42. Zouache D, Nouioua F, Moussaoui A (2016)Quantum-inspired firefly algorithm with particle swarm optimization for discrete optimization problems. Soft Comput 20(7):2781–2799. https://doi.org/10.1007/s00500-015-1681-x

    Article  Google Scholar 

  43. Dhal KG, Das A, Ray S, G’alvez J (2021) Randomly attracted rough firefly algorithm for histogram based fuzzy image clustering. Knowledge-Based Syst 216:106814. https://doi.org/10.1016/j.knosys.2021.106814

    Article  Google Scholar 

  44. Garg S, Jindal B (2020) Skin lesion segmentation using k-mean and optimized fire fly algorithm. Multimed Tools Appl 80(5):7397–7410. https://doi.org/10.1007/s11042-020-10064-8

    Article  Google Scholar 

  45. Kaushal C, Kaushal K, Singla A (2020) Firefly optimization-based segmentation technique to analyse medical images of breast cancer. Int J Computer Mathematics 98(7):1293–1308. https://doi.org/10.1080/00207160.2020.1817411

  46. Chinta SS (2019) Kernelised rough sets based clustering algorithms fused with firefly algorithm for image segmentation. Int J Fuzzy Syst Appl 8(4):25–38. https://doi.org/10.4018/ijfsa.2019100102

    Article  Google Scholar 

  47. Sharma A, Chaturvedi R, Dwivedi U, Kumar S (2021)Multi-level image segmentation of color images using opposition based improved firefly algorithm. Recent Advances in Computer Science and Communications 14(2):521–539

  48. Kumar SN, Fred AL, Kumar HA, Varghese PS (2018) Firefly optimization based improved fuzzy clustering for CT/MR image segmentation. In: Hemanth J, Balas V (Eds.) Nature Inspired Optimization Techniques for Image Processing Applications. Intelligent Systems Reference Library 150:1–28. https://doi.org/10.1007/978-3-319-96002-9_1

  49. Naidu M, Kumar PR, Chiranjeevi K (2018) Shannon and fuzzy entropy based evolutionary image thresholding for image segmentation. Alexandria Eng J 57(3):1643–1655. https://doi.org/10.1016/j.aej.2017.05.024

    Article  Google Scholar 

  50. Ghosh P, Mali K, Das SK (2018) Chaotic firefly algorithm-based fuzzy c-means algorithm for segmentation of brain tissues in magnetic resonance images. J Vis Commun Image Represent 54:63–79. https://doi.org/10.1016/j.jvcir.2018.04.007

    Article  Google Scholar 

  51. Giuliani D (2018) A grayscale segmentation approach using the firefly algorithm and the gaussian mixture model. Int J Swarm Intell Res 9(1):39–57. https://doi.org/10.4018/ijsir.2018010103

    Article  Google Scholar 

  52. Han K-H, Kim J-H(2002)Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans Evol Comput 6(6):580–593

    Article  Google Scholar 

  53. Dey N (Ed.) (2020) Applications of firefly algorithm and its variants: case studies and new developments, Springer

  54. Shafaati HMM (2012) Modified firefly optimization for iir system identification. Expert Syst Appl 14(04):59–69

    Google Scholar 

  55. Olamaei J, Moradi M, Kaboodi T (2013) A new adaptive modified firefly algorithm to solve optimal capacitor placement problem. In: 18th Electric Power Distribution Conference, pp. 1–6. https://doi.org/10.1109/EPDC.2013.6565962 

  56. Kavousi-Fard A, Samet H, Marzbani F (2014) A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Syst Appl 41(13):6047–6056

    Article  Google Scholar 

  57. Yang X-S(2012) Multiobjective firefly algorithm for continuous optimization. Eng Comput 29(2):175–184

    Article  Google Scholar 

  58. Yu S, Yang S, Su S (2013)Self-adaptive step firefly algorithm. J Appl Math 2013:1–8

    MathSciNet  MATH  Google Scholar 

  59. Yu S, Su S, Lu Q, Huang L (2014) A novel wise step strategy for firefly algorithm. Int J Comput Math 91(12):2507–2513

    Article  MathSciNet  Google Scholar 

  60. Watanabe S (1960) Information theoretical analysis of multivariate correlation. IBM J Res Dev 4(1):66–82. https://doi.org/10.1147/rd.41.0066

    Article  MathSciNet  MATH  Google Scholar 

  61. Garner WR (1962) Uncertainty and structure as psychological concepts, Wiley, New York

  62. Studen’y  M, Vejnarov’a  J (1999) The Multiinformation Function as a Tool for Measuring Stochastic Dependence. In: Jordan MI (Eds.) Learning in Graphical Models 89:261–297. https://doi.org/10.1007/978-94-011-5014-9_10

  63. Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. https://doi.org/10.1109/tip.2003.819861

    Article  Google Scholar 

  64. Wang Z, Bovik A (2009) Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process Mag 26(1):98–117. https://doi.org/10.1109/msp.2008.930649

    Article  Google Scholar 

  65. Channappayya SS, Bovik AC, Heath RW (2006) A linear estimator optimized for the structural similarity index and its application to image denoising. In: Proc Intl Conf on Image Processing, pp. 2637–2640. https://doi.org/10.1109/icip.2006.313051

  66. Rehman A, Wang Z, Brunet D, Vrscay ER (2011)SSIM-inspired image denoising using sparse representations, In: Proc Intl Conf on Acoustics, Speech and Signal Processing (ICASSP), pp. 1121–1124. https://doi.org/10.1109/icassp.2011.5946605

  67. Channappayya SS, Bovik AC, Caramanis C, Heath RW (2008)SSIM-optimal linear image restoration. In: Proc Intl Conf on Acoustics, Speech and Signal Processing, pp. 765–768. https://doi.org/10.1109/icassp.2008.4517722

  68. Temerinac-Ott M, Burkhardt H (2009) Multichannel image restoration based on optimization of the structural similarity index. In: Proc 43rd Asilomar Conf on Signals, Systems and Computers, pp. 812–816. https://doi.org/10.1109/ACSSC.2009.5469973

  69. Channappayya S, Bovik A, Caramanis C, Heath R (2008) Design of linear equalizers optimized for the structural similarity index. IEEE Trans Image Process 17(6):857–872. https://doi.org/10.1109/tip.2008.921328

    Article  MathSciNet  Google Scholar 

  70. Brunet D, Vrscay ER, Wang Z (2012) On the mathematical properties of the structural similarity index. IEEE Trans Image Process 21(4):1488–1499. https://doi.org/10.1109/tip.2011.2173206

    Article  MathSciNet  MATH  Google Scholar 

  71. Kavitha AR, Chellamuthu C (2016) Brain tumour segmentation from mri image using genetic algorithm with fuzzy initialisation and seeded modified region growing (gfsmrg) method. Imaging Sci J 64(5):285297–285297. https://doi.org/10.1080/13682199.2016.1178412

    Article  Google Scholar 

  72. Pare S, Bhandari AK, Kumar A, Singh GK (2018) A new technique for multilevel color image thresholding based on modified fuzzy entropy and lvy flight firefly algorithm. Comput Electrical Eng 70:476495–476495. https://doi.org/10.1016/j.compeleceng.2017.08.008

    Article  Google Scholar 

  73. El-Khatib SA, Skobtsov YA, Rodzin SI (2019) Theoretical and experimental evaluation of hybrid aco-k-means image segmentation algorithm for mri images using drift-analysis. Procedia Comput Sci 150:324332–324332. https://doi.org/10.1016/j.procs.2019.02.059

    Article  Google Scholar 

  74. Sharma A, Chaturvedi R, Kumar S, Dwivedi UK (2020)Multi-level image thresholding based on kapur and tsallis entropy using firefly algorithm. J Interdisciplinary Mathematics 23(2):563–571. https://doi.org/10.1080/09720502.2020.1731976

    Article  Google Scholar 

  75. Tharwat A (2020) Classification assessment methods. Appl Comput Informatics 17(1):168–192. https://doi.org/10.1016/j.aci.2018.08.003

    Article  Google Scholar 

  76. Athar S, Wang Z (2019) A comprehensive performance evaluation of image quality assessment algorithms. IEEE Access 7:140030–140070. https://doi.org/10.1109/access.2019.2943319

    Article  Google Scholar 

  77. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybernetics 9(1):62–66. https://doi.org/10.1109/tsmc.1979.4310076

    Article  Google Scholar 

  78. Huang D, Wang C (2009) Optimal multi-level thresholding using a two-stage otsu optimization approach. Pattern Recogn Lett 30(3):275–284. https://doi.org/10.1016/j.patrec.2008.10.003

    Article  Google Scholar 

  79. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80. https://doi.org/10.2307/3001968

    Article  Google Scholar 

  80. Kasuya E (2010) Wilcoxon signed-ranks test: symmetry should be confirmed before the test. Anim Behav 79(3):765–767. https://doi.org/10.1016/j.anbehav.2009.11.019

    Article  Google Scholar 

  81. Yang X-S, Koziel S (2011) Computational optimization: an overview, in: computational optimization, Methods and Algorithms. Springer, Berlin, pp 1–11

    Book  Google Scholar 

  82. Yang XS (2010) Firefly algorithm, levy flights and global optimization. In: Bramer M, Ellis R, Petridis M (Eds.) Research and Development in Intelligent Systems XXVI, pp. 209-218. https://doi.org/10.1007/978-1-84882-983-1_15

  83. Tang K, Xiao X, Wu J, Yang J, Luo L (2016) An improved multilevel thresholding approach based modified bacterial foraging optimization. Appl Intell 46(1):214–226

    Article  Google Scholar 

  84. Gandomi A, Yang X-S, Talatahari S, Alavi A (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98

    Article  MathSciNet  Google Scholar 

  85. Passino K (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst 22(3):5267

    Google Scholar 

  86. Kate V, Shukla P (2020) Image segmentation of breast cancer histopathology images using PSO-based clustering technique. In: Social Networking and Computational Intelligence, vol 100, pp. 207–216. https://doi.org/10.1007/978-981-15-2071-6_17

  87. Kumar SN, Fred AL, Kumar HA, Varghese PS (2019) Firefly optimization based improved fuzzy clustering for CT/MR image segmentation. In: Hemanth J, Balas V (Eds.) Nature Inspired Optimization Techniques for Image Processing Applications, vol 150, pp. 1–28. https://doi.org/10.1007/978-3-319-96002-9_1

  88. Ghosh P, Mali K, Das SK (2018) Chaotic firefly algorithm-based fuzzy c-means algorithm for segmentation of brain tissues in magnetic resonance images. J Vis Commun Image Represent 54:6379–6379. https://doi.org/10.1016/j.jvcir.2018.04.007

    Article  Google Scholar 

  89. Lange N, Lake S, Sperling R, Brown J, Routledge C, Albert M, Heckers S (2004) Two macroscopic and microscopic brain imaging studies of human hippocampus in early alzheimers disease and schizophrenia research. Stat Med 23(2):327–350. https://doi.org/10.1002/sim.1720

    Article  Google Scholar 

  90. Bell CC (1994) DSM-IV: diagnostic and statistical manual of mental disorders. JAMA 272(10):828-829. https://doi.org/10.1001/jama.1994.03520100096046

  91. Heckers S (2001) Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 11(5):520–528. https://doi.org/10.1002/hipo.1068

    Article  Google Scholar 

  92. Heckers S, Rauch S, Goff D, Savage C, Schacter D, Fischman A, Alpert N (1998) Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1(4):318–323. https://doi.org/10.1038/1137

    Article  Google Scholar 

  93. Ragland JD, Gur RC, Raz J, Schroeder L, Kohler CG, Smith RJ, Alavi A, Gur RE (2001) Effect of schizophrenia on frontotemporal activity during word encoding and recognition: A PET cerebral blood flow study. Am J Psychiat 158(7):1114–1125. https://doi.org/10.1176/appi.ajp.158.7.1114

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Prof. Amira S. Ashour, Department of Electronics and Electrical Engineering, Faculty of Engineering, Tanta University, Tanta, Egypt, and Dr. Ahmed Salah Ashour, Lecturer in the Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Egypt, for their valuable guidance on this work and for providing us the rat Hippocampus microscopic images for our experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjoy Pratihar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, ., Samanta, S., Pratihar, S. et al. Multilevel segmentation of Hippocampus images using global steered quantum inspired firefly algorithm. Appl Intell 52, 7339–7372 (2022). https://doi.org/10.1007/s10489-021-02688-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02688-6

Keywords

Navigation