Skip to main content
Log in

Deep finesse network model with multichannel syntactic and contextual features for target-specific sentiment classification

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Target-specific sentiment classification has a dependency over the target term extraction. The majority of current studies in sentiment classification tasks do not utilize the complete linguistic and sentiment knowledge. Consequently, strenuous efforts are to be made for expressing the implications of each word from the sentences, which have significant amount of contextual dependencies. Hence, it leads to the problems like loss of semantics, missing of context-dependent information and also results in poor classification of the models. In this paper, we propose a Deep Finesse Network (DFN) to address these limitations and enhance the accuracy. The DFN employs a multichannel paradigm to exploit multi-grained sentiment features by leveraging the existing linguistic and sentiment knowledge more effectively without any human involvement. In each channel, the model firstly extracts the local features from the multi-grained sentiment features and then captures the global and spatial information of the identified local features. Secondly, it directly models the contextual relationships with enriched semantic information from the global features. Subsequently, the intra-sequence relations were also modeled among the contextual features to identify the target features in order to understand and predict the sentiments of identified contextual features. Finally, the effectiveness of the DFN is also evaluated on different datasets. The results proved that DFN outperforms all the current and advanced state-of-art models in classification accuracy in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chaturvedi I, Ragusa E, Gastaldo P, Zunino R, Cambria E (2018) Bayesian network based extreme learning machine for subjectivity detection. J Frankl Inst 355:1780–1797. https://doi.org/10.1016/j.jfranklin.2017.06.007

    Article  MathSciNet  MATH  Google Scholar 

  2. Poria S, Hussain A, Cambria E (2018) Sentic Patterns: Sentiment Data Flow Analysis by Means of Dynamic Linguistic Patterns. In: Sentic patterns: sentiment data flow analysis by means of dynamic linguistic patterns, in. https://doi.org/10.1007/978-3-319-95020-4_6

    Chapter  Google Scholar 

  3. Wiebe J, Wilson T, Cardie C (2005) Annotating expressions of opinions and emotions in language. Lang. Resour. Eval. https://doi.org/10.1007/s10579-005-7880-9

  4. Ruppenhofer J, Somasundaran S, Wiebe J (2008) Finding the sources and targets of subjective expressions, in: Proc. 6th Int. Conf. Lang. Resour. Eval. Lr. 2008

  5. Dragoni M, Tettamanzi AGB, da Costa Pereira C (2014) A fuzzy system for concept-level sentiment analysis. Commun. Comput. Inf. Sci. https://doi.org/10.1007/978-3-319-12024-9_2

  6. Do HH, Prasad PWC, Maag A, Alsadoon A (2019) Deep learning for aspect-based sentiment analysis: a comparative review. Expert Syst Appl 118:272–299. https://doi.org/10.1016/j.eswa.2018.10.003

    Article  Google Scholar 

  7. Cambria E (2016) Affective computing and sentiment analysis. IEEE Intell Syst 31:102–107. https://doi.org/10.1109/MIS.2016.31

    Article  Google Scholar 

  8. Salas-Zárate MP, Medina-Moreira J, Lagos-Ortiz K, Luna-Aveiga H, Rodríguez-García MÁ, Valencia-García R (2017) Sentiment Analysis on Tweets about Diabetes: An Aspect-Level Approach. Comput. Math. Methods Med 2017:1–9. https://doi.org/10.1155/2017/5140631

    Article  Google Scholar 

  9. Berka P (2020) Sentiment analysis using rule-based and case-based reasoning, 51–66

  10. Giannakopoulos A, Musat C, Hossmann A, Baeriswyl M (2018) Unsupervised Aspect Term Extraction with B-LSTM and CRF using Automatically Labelled Datasets, in: 2018. https://doi.org/10.18653/v1/w17-5224

  11. Zhang B, Xu X, Li X, Chen X, Ye Y, Wang Z (2019) Sentiment analysis through critic learning for optimizing convolutional neural networks with rules. Neurocomputing. 356:21–30. https://doi.org/10.1016/j.neucom.2019.04.038

    Article  Google Scholar 

  12. Yousif A, Niu Z, Chambua J, Khan ZY (2019)Multi-task learning model based on recurrent convolutional neural networks for citation sentiment and purpose classification. Neurocomputing. 335:195–205. https://doi.org/10.1016/j.neucom.2019.01.021

    Article  Google Scholar 

  13. Akhtar MS, Garg T, Ekbal A (2020)Multi-task learning for aspect term extraction and aspect sentiment classification. Neurocomputing. 398:247–256. https://doi.org/10.1016/j.neucom.2020.02.093

    Article  Google Scholar 

  14. Ren L, Xu B, Lin H, Liu X, Yang L (2020) Sarcasm detection with sentiment semantics enhanced multi-level memory network. Neurocomputing. 401:320–326. https://doi.org/10.1016/j.neucom.2020.03.081

    Article  Google Scholar 

  15. Jain DK, Jain R, Upadhyay Y, Kathuria A, Lan X (2020) Deep refinement: capsule network with attention mechanism-based system for text classification. Neural Comput Appl 32:1839–1856. https://doi.org/10.1007/s00521-019-04620-z

    Article  Google Scholar 

  16. Yadav A, Vishwakarma DK (2020) Sentiment analysis using deep learning architectures: a review. Artif. Intell. Rev. https://doi.org/10.1007/s10462-019-09794-5

  17. Kulkarni A, Shivananda A, Kulkarni A, Shivananda A (2019) Deep learning for NLP, in: Nat. Lang. Process. Recipes, https://doi.org/10.1007/978-1-4842-4267-4_6

  18. Ghorbani M, Bahaghighat M, Xin Q, Özen F (2020) ConvLSTMConv network: a deep learning approach for sentiment analysis in cloud computing. J Cloud Comput 9:1–12. https://doi.org/10.1186/s13677-020-00162-1

    Article  Google Scholar 

  19. Kim J, Jang S, Park E, Choi S (2020) Text classification using capsules. Neurocomputing. https://doi.org/10.1016/j.neucom.2019.10.033

  20. Tang D, Qin B, Feng X, Liu T (2016) Effective LSTMs for target-dependent sentiment classification, COLING 2016 - 26th Int. Conf. Comput. Linguist. Proc. COLING 2016 Tech. Pap. 3298–3307

  21. Wang Y, Huang M, Zhao L, Zhu X (2016)Attention-based LSTM for aspect-level sentiment classification, EMNLP 2016 - Conf. Empir. Methods Nat. Lang. Process. Proc. 606–615. https://doi.org/10.18653/v1/d16-1058

  22. Nguyen HT, Le Nguyen M (2018) Effective Attention Networks for Aspect-level Sentiment Classification. Proc. 2018 10th Int. Conf. Knowl. Syst. Eng. KSE 2018:25–30. https://doi.org/10.1109/KSE.2018.8573324

    Article  Google Scholar 

  23. Li X, Bing L, Lam W, Shi B (2018) Transformation networks for target-oriented sentiment classification, in: ACL 2018 - 56th Annu. Meet. Assoc. Comput. Linguist. Proc. Conf. (Long Pap., https://doi.org/10.18653/v1/p18-1087

  24. Liu N, Shen B (2020) ReMemNN: a novel memory neural network for powerful interaction in aspect-based sentiment analysis. Neurocomputing. 395:66–77. https://doi.org/10.1016/j.neucom.2020.02.018

    Article  Google Scholar 

  25. Liu B (2015) Sentiment analysis: mining opinions, sentiments, and emotions. https://doi.org/10.1017/CBO9781139084789

  26. Wei J, Liao J, Yang Z, Wang S, Zhao Q (2020)Bi-LSTM with multi-polarity orthogonal attention for implicit sentiment analysis. Neurocomputing. 383:165–173. https://doi.org/10.1016/j.neucom.2019.11.054

    Article  Google Scholar 

  27. Tan X, Cai Y, Xu J, Leung HF, Chen W, Li Q (2020) Improving aspect-based sentiment analysis via aligning aspect embedding. Neurocomputing. 383:336–347. https://doi.org/10.1016/j.neucom.2019.12.035

    Article  Google Scholar 

  28. Liu F, Zheng L, Zheng J (2020) HieNN-DWE: a hierarchical neural network with dynamic word embeddings for document level sentiment classification. Neurocomputing. 403:21–32. https://doi.org/10.1016/j.neucom.2020.04.084

    Article  Google Scholar 

  29. Liu F, Zheng J, Zheng L, Chen C (2020) Combining attention-based bidirectional gated recurrent neural network and two-dimensional convolutional neural network for document-level sentiment classification. Neurocomputing. 371:39–50. https://doi.org/10.1016/j.neucom.2019.09.012

    Article  Google Scholar 

  30. Chen F, Huang Y (2019)Knowledge-enhanced neural networks for sentiment analysis of Chinese reviews. Neurocomputing. 368:51–58. https://doi.org/10.1016/j.neucom.2019.08.054

    Article  Google Scholar 

  31. Tang D, Qin B, Feng X, Liu T (2015)Target-Dependent Sentiment Classification with Long Short Term Memory, ArXiv Prepr. ArXiv1512.01100

  32. Penghua Z, Dingyi Z (2019)Bidirectional-GRU based on attention mechanism for aspect-level sentiment analysis, in: ACM Int. Conf. Proceeding Ser. https://doi.org/10.1145/3318299.3318368

    Book  Google Scholar 

  33. Yang C, Zhang H, Jiang B, Li K (2019)Aspect-based sentiment analysis with alternating coattention networks. Inf Process Manag 56:463–478. https://doi.org/10.1016/j.ipm.2018.12.004

    Article  Google Scholar 

  34. Fan F, Feng Y, Zhao D (2020)Multi-grained attention network for aspect-level sentiment classification. Proc. 2018 Conf. Empir. Methods Nat. Lang. Process. EMNLP 2018:3433–3442. https://doi.org/10.18653/v1/d18-1380

    Article  Google Scholar 

  35. Zhou J, Chen Q, Huang JX, Hu QV, He L (2020)Position-aware hierarchical transfer model for aspect-level sentiment classification. Inf. Sci. (Ny) 513:1–16. https://doi.org/10.1016/j.ins.2019.11.048

    Article  Google Scholar 

  36. Park HJ, Song M, Shin KS (2020) Deep learning models and datasets for aspect term sentiment classification: Implementing holistic recurrent attention on target-dependent memories. Knowledge-Based Syst 187:104825. https://doi.org/10.1016/j.knosys.2019.06.033

    Article  Google Scholar 

  37. Ma X, Zeng J, Peng L, Fortino G, Zhang Y (2019) Modeling multi-aspects within one opinionated sentence simultaneously for aspect-level sentiment analysis. Futur Gener Comput Syst 93:304–311. https://doi.org/10.1016/j.future.2018.10.041

    Article  Google Scholar 

  38. Hazarika D, Poria S, Vij P, Krishnamurthy G, Cambria E, Zimmermann R (2018) Modeling inter-aspect dependencies for aspect-based sentiment analysis, NAACL HLT 2018–2018 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. - Proc. Conf. 2 266–270. https://doi.org/10.18653/v1/n18-2043

  39. Song Y, Wang J, Jiang T, Liu Z, Rao Y (2019) Targeted Sentiment Classification with Attentional Encoder Network, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 11730 LNCS 93–103. https://doi.org/10.1007/978-3-030-30490-4_9

  40. Chen P, Sun Z, Bing L, Yang W (2017) Recurrent attention network on memory for aspect sentiment analysis. EMNLP 2017 - Conf. Empir. Methods Nat. Lang. Process. Proc:452–461. https://doi.org/10.18653/v1/d17-1047

  41. Su J, Yu S, Luo D (2020) Enhancing aspect-based sentiment analysis with capsule network. IEEE Access 8:100551–100561. https://doi.org/10.1109/ACCESS.2020.2997675

    Article  Google Scholar 

  42. Xu Q, Zhu L, Dai T, Yan C (2020)Aspect-based sentiment classification with multi-attention network. Neurocomputing. 388:135–143. https://doi.org/10.1016/j.neucom.2020.01.024

    Article  Google Scholar 

  43. Gu S, Zhang L, Hou Y, Song Y (2018) A position-aware bidirectional attention network for aspect-level sentiment analysis, Proc. 27th Int. Conf. Comput. Linguist. 774–784. http://www.aclweb.org/anthology/C18-1066

  44. Zhao P, Hou L, Wu O (2020) Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification. Knowledge-Based Syst 193. https://doi.org/10.1016/j.knosys.2019.105443

  45. Wagner J, Arora P, Cortes S, Barman U, Bogdanova D, Foster J, Tounsi L (2015) DCU: Aspect-based Polarity Classification for SemEval Task 4:223–229. https://doi.org/10.3115/v1/s14-2036

    Article  Google Scholar 

  46. Xue W, Li T (2018) Aspect based sentiment analysis with gated convolutional networks, ACL 2018 - 56th Annu. Meet. Assoc. Comput. Linguist. Proc. Conf. (Long Pap. 1 2514–2523. https://doi.org/10.18653/v1/p18-1234

  47. Shuang K, Ren X, Yang Q, Li R, Loo J (2019) AELA-DLSTMs: attention-enabled and location-aware double LSTMs for aspect-level sentiment classification. Neurocomputing. 334:25–34. https://doi.org/10.1016/j.neucom.2018.11.084

    Article  Google Scholar 

  48. Mihalcea R, Tarau P (2004) TextRank: bringing order into texts. Proc. EMNLP. https://doi.org/10.3115/1219044.1219064

  49. Mihalcea R (2004)Graph-based ranking algorithms for sentence extraction, applied to text summarization, in: https://doi.org/10.3115/1219044.1219064

  50. Yang K, Chen Z, Cai Y, Huang DP, Leung HF, Improved automatic keyword extraction given more semantic knowledge, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2016. https://doi.org/10.1007/978-3-319-32055-7_10

  51. Wen Y, Yuan H, Zhang P, Research on keyword extraction based on Word2Vec weighted TextRank, in: 2016 2nd IEEE Int. Conf. Comput. Commun. ICCC 2016 - Proc., 2017. https://doi.org/10.1109/CompComm.2016.7925072

  52. C. Mallick, A.K. Das, M. Dutta, A.K. Das, A. Sarkar (2018)Graph-based text summarization using modified TextRank, in: Adv. Intell. Syst. Comput., https://doi.org/10.1007/978-981-13-0514-6_14

  53. Alfred R, Mujat A, Obit JH, A Ruled-Based Part of Speech (RPOS) tagger for Malay text articles, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2013: pp. 50–59. https://doi.org/10.1007/978-3-642-36543-0_6

  54. Hutto CJ, Gilbert E, VADER: A parsimonious rule-based model for sentiment analysis of social media text, in: Proc. 8th Int. Conf. Weblogs Soc. Media, ICWSM 2014, 2014

  55. Yang M, Zhao W, Chen L, Qu Q, Zhao Z, Shen Y (2019) Investigating the transferring capability of capsule networks for text classification. Neural Netw 118:247–261. https://doi.org/10.1016/j.neunet.2019.06.014

    Article  Google Scholar 

  56. Saif H, He Y, Fernandez M, Alani H (2016) Contextual semantics for sentiment analysis of twitter. Inf Process Manag 52:5–19. https://doi.org/10.1016/j.ipm.2015.01.005

    Article  Google Scholar 

  57. Letarte G, Paradis F, Giguère P, Laviolette F, Importance of Self-Attention for Sentiment Analysis, in: 2019. https://doi.org/10.18653/v1/w18-5429

  58. Ambartsoumian A, Popowich F, Self-Attention: A Better Building Block for Sentiment Analysis Neural Network Classifiers, in: 2019. https://doi.org/10.18653/v1/w18-6219

  59. Akhtar MS, Kumar A, Ghosal D, Ekbal A, Bhattacharyya P, A Multilayer perceptron based ensemble technique for fine-grained financial sentiment analysis, in: EMNLP 2017 - Conf. Empir. Methods Nat. Lang. Process. Proc., 2017. https://doi.org/10.18653/v1/d17-1057

  60. Al-Batah MS, Mrayyen S, Alzaqebah M (2018) Investigation of naive Bayes combined with multilayer perceptron for Arabic sentiment analysis and opinion mining. J. Comput. Sci. https://doi.org/10.3844/jcssp.2018.1104.1114

  61. Nwankpa C, Ijomah W, Gachagan A, Marshall S, Activation Functions: Comparison of trends in Practice and Research for Deep Learning, (2018) 1–20. http://arxiv.org/abs/1811.03378

  62. Tao J, Fang X (2020) Toward multi-label sentiment analysis: a transfer learning based approach. J Big Data 7:1–26. https://doi.org/10.1186/s40537-019-0278-0

    Article  Google Scholar 

  63. Hancock JT, Khoshgoftaar TM (2020) Survey on categorical data for neural networks. J. Big Data 7. https://doi.org/10.1186/s40537-020-00305-w

  64. Wang B, Wang A, Chen F, Wang Y, Kuo CCJ (2019) Evaluating word embedding models: methods and experimental results. APSIPA Trans Signal Inf Process 8:1–13. https://doi.org/10.1017/ATSIP.2019.12

    Article  Google Scholar 

  65. Pennington J, Socher R, Manning CD, GloVe: Global vectors for word representation, in: EMNLP 2014–2014 Conf. Empir. Methods Nat. Lang. Process. Proc. Conf., 2014. https://doi.org/10.3115/v1/d14-1162

  66. Joulin A, Grave E, Bojanowski P, Mikolov T, Bag of tricks for efficient text classification, in: 15th Conf. Eur. Chapter Assoc. Comput. Linguist. EACL 2017 - Proc. Conf., 2017. https://doi.org/10.18653/v1/e17-2068

  67. Howard J, Ruder S Universal language model fine-tuning for text classification, in: ACL 2018 - 56th Annu. Meet. Assoc. Comput. Linguist. Proc. Conf. (Long Pap., 2018. https://doi.org/10.18653/v1/p18-1031

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Krishna Kishore Kolli.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edara, D.C., Sistla, V. & Kolli, V.K.K. Deep finesse network model with multichannel syntactic and contextual features for target-specific sentiment classification. Appl Intell 52, 8664–8684 (2022). https://doi.org/10.1007/s10489-021-02692-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02692-w

Keywords

Navigation