Skip to main content
Log in

Online algorithm configuration for differential evolution algorithm

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The performance of evolutionary algorithms (EAs) is strongly affected by their configurations. Thus, algorithm configuration (AC) problem, that is, to properly set algorithm’s configuration, including the operators and parameter values for maximizing the algorithm’s performance on given problem(s) is an essential and challenging task in the design and application of EAs. In this paper, an online algorithm configuration (OAC) approach is proposed for differential evolution (DE) algorithm to adapt its configuration in a data-driven way. In our proposed OAC, the multi-armed bandit algorithm is adopted to select trial vector generation strategies for DE, and the kernel density estimation method is used to adapt the associated control parameters during the evolutionary search process. The performance of DE algorithm using the proposed OAC (OAC-DE) is evaluated on a benchmark set of 30 bound-constrained numerical optimization problems and compared with several adaptive DE variants. Besides, the influence of OAC’s hyper-parameter on its performance is analyzed. The comparison results show OAC-DE achieves better average performance than the compared algorithms, which validates the effectiveness of the proposed OAC. The sensitivity analysis indicates that the hyper-parameter of OAC has little impact on OAC-DE’s performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aleti A, Moser I (2016) A systematic literature review of adaptive parameter control methods for evolutionary algorithms. ACM Comput Surv 49(3)

  2. Ansótegui C, Sellmann M, Tierney K (2009) A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent IP (ed) Principles and practice of constraint programming - CP 2009. Springer, Berlin, pp 142–157

  3. Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the multiarmed bandit problem. Mach Learn 47(2-3):235–256

    Article  Google Scholar 

  4. Awad NH, Ali MZ, Liang JJ, Qu BY, Suganthan PN (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization. Tech rep. Nanyang Technological University, Singapore

  5. Baker JE (1987) Reducing bias and inefficiency in the selection algorithm. In: Proceedings of the second international conference on genetic algorithms on genetic algorithms and their application, L Erlbaum Associates Inc., USA. 14–21

  6. Balaprakash P, Birattari M, Stützle T (2007) Improvement strategies for the F-race algorithm: Sampling design and iterative refinement. In: Bartz-beielstein T, blesa aguilera MJ, Blum C, Naujoks B, Roli A, Rudolph G, Sampels M (eds) Hybrid metaheuristics. Springer, Berlin, pp 108–122

  7. Birattari M, Stützle T, Paquete L, Varrentrapp K (2002) A racing algorithm for configuring metaheuristics. In: Proceedings of the 4th annual conference on genetic and evolutionary computation. Morgan Kaufmann Publishers Inc San Francisco, CA, USA, GECCO’02. 11–18

  8. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657

    Article  Google Scholar 

  9. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

    Article  Google Scholar 

  10. Das S, Mullick SS, Suganthan PN (2016) Recent advances in differential evolution–an updated survey. Swarm Evol Comput 27:1–30

    Article  Google Scholar 

  11. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  12. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  13. Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141

    Article  Google Scholar 

  14. Fan Q, Wang W, Yan X (2019) Differential evolution algorithm with strategy adaptation and knowledge-based control parameters. Artif Intell Rev 51(2):219–253

    Article  Google Scholar 

  15. Gong W, Fialho Á, Cai Z, Li H (2011) Adaptive strategy selection in differential evolution for numerical optimization: An empirical study. Inf Sci 181(24):5364–5386

    Article  MathSciNet  Google Scholar 

  16. Gramacki A (2018) Kernel density estimation. In: Kacprzyk J (ed) Nonparametric kernel density estimation and its computational aspects. Springer International Publishing, Cham, pp 25–62

  17. Hoos HH (2012) Automated algorithm configuration and parameter tuning. In: Hamadi Y, Monfroy E, Saubion F (eds) Autonomous Search. Springer, pp 37–71

  18. Huang C, Yuan B, Li Y, Yao X (2019) Automatic parameter tuning using bayesian optimization method. IEEE Congr. Evol. Comput. Wellington, New Zealand. 2090–2097

  19. Huang C, Li Y, Yao X (2020) A survey of automatic parameter tuning methods for metaheuristics. IEEE Trans Evol Comput 24(2):201–216

    Article  Google Scholar 

  20. Hutter F, Hoos HH, Leytonbrown K, Stutzle T (2009) ParamILS: an automatic algorithm configuration framework. J Artif Intell Res 36(1):267–306

    Article  Google Scholar 

  21. Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In: Coello CAC (ed) Learning and intelligent optimization. Springer, Heidelberg, pp 507–523

  22. Iorio AW, Li X (2005) Solving rotated multi-objective optimization problems using differential evolution. In: Webb GI, Yu X (eds) AI: 2004 advances in artificial intelligence. Springer, Berlin, pp 861–872

  23. Jerebic J, Mernik M, Liu SH, Ravber M, Baketarić M, Mernik L, Črepinšek M (2021) A novel direct measure of exploration and exploitation based on attraction basins. Expert Syst Appl 114353:167

    Google Scholar 

  24. Karafotias G, Hoogendoorn M, Eiben AE (2015) Parameter control in evolutionary algorithms: Trends and challenges. IEEE Trans Evol Comput 19(2):167–187

    Article  Google Scholar 

  25. Koulouriotis D, Xanthopoulos A (2008) Reinforcement learning and evolutionary algorithms for non-stationary multi-armed bandit problems. Appl Math Comput 196(2):913–922

    MATH  Google Scholar 

  26. Liu SH, Mernik M, Hrnčič D, Črepinšek M (2013) A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting sovova’s mass transfer model. Appl Soft Comput 13(9):3792–3805

    Article  Google Scholar 

  27. Lu X, Tang K, Sendhoff B, Yao X (2014) A new self-adaptation scheme for differential evolution. Neurocomputing 146:2–16

    Article  Google Scholar 

  28. Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696

    Article  Google Scholar 

  29. Mallipeddi R, Wu G, Lee M, Suganthan PN (2014) Gaussian adaptation based parameter adaptation for differential evolution. In: 2014 IEEE congress on evolutionary computation (CEC), pp 1760–1767

  30. Montgomery J, Chen S (2010) An analysis of the operation of differential evolution at high and low crossover rates. IEEE Congr Evol Comput Barcelona, Spain. 1–8

  31. Müller C L, If Sbalzarini (2010) Gaussian adaptation revisited – an entropic view on covariance matrix adaptation. In: Di chio C, Cagnoni S, Cotta C, Ebner M, Ekárt A, Esparcia-Alcazar AI, Goh CK, Merelo JJ, Neri F, Preuß M, Togelius J, Yannakakis GN (eds) Applications of evolutionary computation. Springer, Berlin, pp 432–441

  32. Nannen V, Eiben A (2006) A method for parameter calibration and relevance estimation in evolutionary algorithms. In: Proceedings of the 8th annual conference on genetic and evolutionary computation, association for computing machinery, New York, NY, USA, GECCO ’06. p 183–190

  33. Neri F, Tirronen V (2010) Recent advances in differential evolution: a survey and experimentalanalysis. Artif Intell Rev 33(1-2):61–106

    Article  Google Scholar 

  34. Opara K, Arabas J (2018) Comparison of mutation strategies in differential evolution – a probabilistic perspective. Swarm Evol Comput 39:53–69

    Article  Google Scholar 

  35. Opara KR, Arabas J (2019) Differential evolution: a survey of theoretical analyses. Swarm Evol Comput 44:546–558

    Article  Google Scholar 

  36. Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33 (3):1065–1076

    Article  MathSciNet  Google Scholar 

  37. Price KV, Storn RM, Lampinen JA (2005) The differential evolution algorithm. In: Rozenberg G, Bäck T, Eiben A, Kok J, Spaink H (eds). Springer, Berlin, pp 37–134

  38. Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. In: IEEE Congr. Evol. Comput., Edinburgh, Scotland, UK, vol 2, pp 1785–1791 vol. 2

  39. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Article  Google Scholar 

  40. Santucci V, Milani A (2011) Covariance-based parameters adaptation in differential evolution. In: Proceedings of the 13th Annual conference companion on genetic and evolutionary computation, association for computing machinery, New York, NY, USA, GECCO ’11. 687–690

  41. Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N (2016) Taking the human out of the loop: a review of bayesian optimization. Proc IEEE 104(1):148–175

    Article  Google Scholar 

  42. Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  Google Scholar 

  43. Sutton RS, Barto AG (2018) Reinforcement learning: An introduction. MIT Press, Cambridge

    MATH  Google Scholar 

  44. Swami A, jain R (2013) Scikit-learn: Machine learning in python. J Mach Learn Res 12 (10):2825–2830

    MathSciNet  Google Scholar 

  45. Veček N, Mernik M, Filipič B, Črepinšek M (2016) Parameter tuning with chess rating system (CRS-tuning) for meta-heuristic algorithms. Inf Sci 372:446–469

    Article  Google Scholar 

  46. Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66

    Article  Google Scholar 

  47. Yang Z, Tang K, Yao X (2008a) Self-adaptive differential evolution with neighborhood search. IEEE Congr Evol Comput. Hong Kong, China, 1110–1116

  48. Yang Z, Yao X, He J (2008b) Making a difference to differential evolution. In: Siarry P, Michalewicz Z (eds) Advances in metaheuristics for hard optimization. springer, Berlin, pp 397– 414

  49. Yang Z, Tang K, Yao X (2011) Scalability of generalized adaptive differential evolution for large-scale continuous optimization. Soft Comput 15(11):2141–2155

    Article  Google Scholar 

  50. Yu W, Shen M, Chen W, Zhan Z, Gong Y, Lin Y, Liu O, Zhang J (2014) Differential evolution with two-level parameter adaptation. IEEE Trans Cybern 44(7):1080–1099

    Article  Google Scholar 

  51. Zhang J, Sanderson AC (2009) JADE: Adaptive Differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515110575), the Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), the Program for Guangdong Introducing Innovative and Enterpreneurial Teams (Grant No. 2017ZT07X386), the Shenzhen Science and Technology Program (Grant No. KQTD2016112514355531), Shenzhen Basic Research Program (No. JCYJ20180504165652917), and the Program for University Key Laboratory of Guangdong Province (Grant No. 2017KSYS008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Yao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Changwu Huang and Hao Bai contributed equally to this work and are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Bai, H. & Yao, X. Online algorithm configuration for differential evolution algorithm. Appl Intell 52, 9193–9211 (2022). https://doi.org/10.1007/s10489-021-02752-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02752-1

Keywords

Navigation