Skip to main content
Log in

D3FC: deep feature-extractor discriminative dictionary-learning fuzzy classifier for medical imaging

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Providing accurate and speedy diagnosis and, in turn, treatment, automated medical image analysis plays a significant role in survival rate improvement. Inherent different kinds of uncertainties and complexities prove machine learning-based, particularly dictionary-learning-based classification approaches, very promisingly. This work concerns class-specific fuzzy discriminative dictionary learning using deep features on the continuum of our machine-learning-based medical image classifiers’ evolution path. In D3FC, a deep autoencoder generates a more relevant, representative, and compact features set. The distinctive-hidden information and inherent complexity and uncertainty of medical images are addressed using fuzzy-discriminative terms in the optimization function, simultaneously improving the inter-class-representation distance and intra-class-representation similarity. A comprehensive set of experiments on cancer tumor images from three different databases shows the outperformance of D3FC over related state-of-the-art competitions in accuracy, sensitivity, specificity, precision, convergence speed, and noise resilience. The meaningfulness of the experiments’ results is statistically verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aharon M, Elad M, Bruckstein A et al (2006) K-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311

    Article  MATH  Google Scholar 

  2. Chatfield K, Lempitsky VS, Vedaldi A, Zisserman A (2011) The devil is in the details: an evaluation of recent feature encoding methods. In: BMVC, vol 2, p. 8

  3. Chen Y, Shi L, Feng Q, Yang J, Shu H, Luo L, Coatrieux JL, Chen W (2014) Artifact suppressed dictionary learning for low-dose ct image processing. IEEE Trans Med Imaging 33(12):2271– 2292

    Article  Google Scholar 

  4. Chowdhary CL, Mittal M, Pattanaik P, Marszalek Z et al (2020) An efficient segmentation and classification system in medical images using intuitionist possibilistic fuzzy c-mean clustering and fuzzy svm algorithm. Sensors 20(14):3903

    Article  Google Scholar 

  5. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M et al (2013) The cancer imaging archive (tcia): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057

    Article  Google Scholar 

  6. Dai W, Xu T, Wang W (2012) Simultaneous codeword optimization (simco) for dictionary update and learning. IEEE Trans Signal Process 60(12):6340–6353

    Article  MathSciNet  MATH  Google Scholar 

  7. Elhamifar E, Vidal R (2011) Robust classification using structured sparse representation. In: CVPR 2011. IEEE, pp 1873–1879

  8. Elmoufidi A, El Fahssi K, Jai-Andaloussi S, Sekkaki A, Gwenole Q, Lamard M (2017) Anomaly classification in digital mammography based on multiple-instance learning. IET Image Process 12 (3):320–328

    Article  Google Scholar 

  9. Engan K, Aase SO, Husoy JH (1999) Method of optimal directions for frame design. In: , 1999. Proceedings., 1999 IEEE international conference on Acoustics, speech, and signal processing, vol 5. IEEE, pp 2443–2446

  10. Fang H, Fan H, Lin S, Qing Z, Sheykhahmad FR (2021) Automatic breast cancer detection based on optimized neural network using whale optimization algorithm. Int J Imaging Syst Technol 31(1):425–438

    Article  Google Scholar 

  11. Foldiak P (2003) Sparse coding in the primate cortex. The Handbook of Brain Theory and Neural Networks

  12. Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Amer Stat Assoc 32(200):675–701

    Article  MATH  Google Scholar 

  13. Ghasemi M, Kelarestaghi M, Eshghi F, Sharifi A (2020) Fdsr: A new fuzzy discriminative sparse representation method for medical image classification. Artif Intell Med:101876

  14. Ghasemi M, Kelarestaghi M, Eshghi F, Sharifi A (2020) T2-fdl: A robust sparse representation method using adaptive type-2 fuzzy dictionary learning for medical image classification. Expert Syst Appl:113500

  15. Ghasemi M, Kelarestaghi M, Eshghi F, Sharifi A (2021) Afdl: a new adaptive fuzzy dictionary learning for medical image classification. Pattern Anal Applic 24(1):145–164

    Article  Google Scholar 

  16. Gravel P, Beaudoin G, De Guise JA (2004) A method for modeling noise in medical images. IEEE Trans Med Imaging 23(10):1221–1232

    Article  Google Scholar 

  17. Hao S, Wang W, Yan Y, Bruzzone L (2017) Class-wise dictionary learning for hyperspectral image classification. Neurocomputing 220:121–129

    Article  Google Scholar 

  18. Huang K, Aviyente S (2007) Sparse representation for signal classification. In: Advances in neural information processing systems, pp 609–616

  19. Huang Z, Zhu X, Ding M, Zhang X (2020) Medical image classification using a light-weighted hybrid neural network based on pcanet and densenet. IEEE Access 8:24697–24712

    Article  Google Scholar 

  20. Jiang Z, Lin Z, Davis LS (2011) Learning a discriminative dictionary for sparse coding via label consistent k-svd. In: CVPR 2011. IEEE, pp 1697–1704

  21. Jouirou A, Baâzaoui A, Barhoumi W (2021) Multi-view content-based mammogram retrieval using dynamic similarity and locality sensitive hashing. Pattern Recogn 112:107786

    Article  Google Scholar 

  22. Kachuee M, Darabi S, Moatamed B, Sarrafzadeh M (2018) Dynamic feature acquisition using denoising autoencoders. IEEE Trans Neural Netw Learn Syst 30(8):2252–2262

    Article  Google Scholar 

  23. Kumar V, Schuhmacher M (2005) Fuzzy uncertainty analysis in system modeling. Proceeding of ESCAPE–15, Barcelona, pp 391–396

  24. Lbachir IA, Daoudi I, Tallal S (2020) Automatic computer-aided diagnosis system for mass detection and classification in mammography. Multimed Tools Appl:1–33

  25. Lelandais B, Gardin I, Mouchard L, Vera P, Ruan S (2014) Dealing with uncertainty and imprecision in image segmentation using belief function theory. Int J Approx Reason 55(1):376–387

    Article  MathSciNet  Google Scholar 

  26. Li X, Fang M, Wang H, Zhang JJ (2015) Supervised transfer kernel sparse coding for image classification. Pattern Recogn Lett 68:27–33

    Article  Google Scholar 

  27. Liu J, Ma J, Zhang Y, Chen Y, Yang J, Shu H, Luo L, Coatrieux G, Yang W, Feng Q et al (2017) Discriminative feature representation to improve projection data inconsistency for low dose ct imaging. IEEE Trans Med Imaging 36(12):2499–2509

    Article  Google Scholar 

  28. Liu Z, Wu XJ, Shu Z (2019) Sparsity augmented discriminative sparse representation for face recognition. Pattern Anal Appl:1–9

  29. Luo T, Yang Y, Yi D, Ye J (2017) Robust discriminative feature learning with calibrated data reconstruction and sparse low-rank model. Appl Intell:1–14

  30. Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process 41(12):3397–3415

    Article  MATH  Google Scholar 

  31. Muduli D, Dash R, Majhi B (2020) Automated breast cancer detection in digital mammograms: a moth flame optimization based elm approach. Biomed Signal Process Control 59:101912

    Article  Google Scholar 

  32. Muhammad K, Khan S, Del Ser J, de Albuquerque VHC (2020) Deep learning for multigrade brain tumor classification in smart healthcare systems: A prospective survey. IEEE Transactions on Neural Networks and Learning Systems

  33. Pan F, Zhang ZX, Liu BD, Xie JJ (2020) Class-specific sparse principal component analysis for visual classification. IEEE Access 8:110033–110047

  34. Pati YC, Rezaiifar R, Krishnaprasad PS (1993) Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Proceedings of 27th Asilomar conference on signals, systems and computers. IEEE, pp 40–44

  35. Pedano N, Flanders A, Scarpace L et al (2016) Radiology data from the cancer genome atlas low grade glioma [tcga-lgg] collection. Cancer Imaging Arch

  36. Pezeshki H, Rastgarpour M, Sharifi A, Yazdani S (2019) Extraction of spiculated parts of mammogram tumors to improve accuracy of classification. Multimed Tools Appl 78(14):19979–20003

    Article  Google Scholar 

  37. Pham TD (2014) Nonstationary mapping of spatial uncertainty for medical image classification. In: 2014 international conference on Medical biometrics. IEEE, pp 164–168

  38. Raju AR, Suresh P, Rao RR (2018) Bayesian hcs-based multi-svnn: A classification approach for brain tumor segmentation and classification using bayesian fuzzy clustering. Biocybernetics and Biomedical Engineering

  39. Russo F (2000) Noise removal from image data using recursive neurofuzzy filters. IEEE Trans Instrum Meas 49(2):307–314

    Article  Google Scholar 

  40. Sankararaman S, Mahadevan S (2013) Distribution type uncertainty due to sparse and imprecise data. Mech Syst Signal Process 37(1-2):182–198

    Article  Google Scholar 

  41. Sharma A, Kaur M (2017) Enhanced false coloring in medical image processing. International Journal of Advance Research, Ideas and Innovations in Technology

  42. Shin HC, Orton MR, Collins DJ, Doran SJ, Leach MO (2012) Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4d patient data. IEEE Trans Pattern Anal Mach Intell 35(8):1930–1943

    Article  Google Scholar 

  43. Siddiqua A, Fan G (2019) Semantics-enhanced supervised deep autoencoder for depth image-based 3d model retrieval. Pattern Recogn Lett 125:806–812

    Article  Google Scholar 

  44. Singh M, Nagpal S, Vatsa M, Singh R (2019) Are you eligible? predicting adulthood from face images via class specific mean autoencoder. Pattern Recogn Lett 119:121–130

    Article  Google Scholar 

  45. Suckling JP (1994) The mammographic image analysis society digital mammogram database. Digit Mammo:375–386

  46. Sun Y, Liu Q, Tang J, Tao D (2014) Learning discriminative dictionary for group sparse representation. IEEE Trans Image Process 23(9):3816–3828

    Article  MathSciNet  MATH  Google Scholar 

  47. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans syst Man Cybern (1):116–132

  48. Tang XS, Hao K, Wei H, Ding Y (2017) Using line segments to train multi-stream stacked autoencoders for image classification. Pattern Recogn Lett 94:55–61

    Article  Google Scholar 

  49. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA, Bottou L (2010) Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11(12)

  50. Wagner RF (1983) Low contrast sensitivity of radiologic, ct, nuclear medicine, and ultrasound medical imaging systems. IEEE Trans Med Imaging 2(3):105–121

    Article  Google Scholar 

  51. Wang CP, Wei W, Zhang JS, Song HB (2018) Robust face recognition via discriminative and common hybrid dictionary learning. Appl Intell 48(1):156–165

    Article  Google Scholar 

  52. Wang H, Yuan C, Hu W, Sun C (2012) Supervised class-specific dictionary learning for sparse modeling in action recognition. Pattern Recogn 45(11):3902–3911

    Article  Google Scholar 

  53. Wang YJ, Shao S, Xu R, Liu W, Liu BD (2020) Class specific or shared? a cascaded dictionary learning framework for image classification. Signal Process 176:107697

    Article  Google Scholar 

  54. Wong KC, Syeda-Mahmood T, Moradi M (2018) Building medical image classifiers with very limited data using segmentation networks. Med Image Anal 49:105–116

    Article  Google Scholar 

  55. Xu Y, Sun Y, Quan Y, Zheng B (2015) Discriminative structured dictionary learning with hierarchical group sparsity. Comput Vis Image Underst 136:59–68

    Article  Google Scholar 

  56. Yang X, Jiang X, Tian C, Wang P, Zhou F, Fujita H (2020) Inverse projection group sparse representation for tumor classification: a low rank variation dictionary approach. Knowl-Based Syst 196:105768

    Article  Google Scholar 

  57. Yu X, Kang C, Guttery DS, Kadry S, Chen Y, Zhang YD (2020) Resnet-scda-50 for breast abnormality classification. IEEE/ACM Transactions on Computational Biology and Bioinformatics

  58. Yu X, Pang W, Xu Q, Liang M (2020) Mammographic image classification with deep fusion learning. Sci Rep 10(1):1–11

    Google Scholar 

  59. Yu Y, Diamantaras KI, McKelvey T, Kung SY (2016) Class-specific subspace kernel representations and adaptive margin slack minimization for large scale classification. IEEE Trans Neural Netw Learn Syst 29(2):440–456

    Article  MathSciNet  Google Scholar 

  60. Zarinbal M, Zarandi MF, Turksen I, Izadi M (2015) A type-2 fuzzy image processing expert system for diagnosing brain tumors. J Med Syst 39(10):1–20

    Article  Google Scholar 

  61. Zhang C, Liang C, Li L, Liu J, Huang Q, Tian Q (2016) Fine-grained image classification via low-rank sparse coding with general and class-specific codebooks. IEEE Trans Neural Netw Learn Syst 28(7):1550–1559

    Article  MathSciNet  Google Scholar 

  62. Zhang L, Cobzas D, Wilman AH, Kong L (2017) Significant anatomy detection through sparse classification: a comparative study. IEEE Trans Med Imaging 37(1):128–137

    Article  Google Scholar 

  63. Zhang Q, Li B (2010) Discriminative k-svd for dictionary learning in face recognition. In: 2010 IEEE Computer society conference on computer vision and pattern recognition. IEEE, pp 2691–2698

  64. Zhang R, Shen J, Wei F, Li X, Sangaiah AK (2017) Medical image classification based on multi-scale non-negative sparse coding. Artif Intell Med 83:44–51

    Article  Google Scholar 

  65. Zhang S, Wang J, Tao X, Gong Y, Zheng N (2017) Constructing deep sparse coding network for image classification. Pattern Recogn 64:130–140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoochehr Kelarestaghi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, M., Kelarestaghi, M., Eshghi, F. et al. D3FC: deep feature-extractor discriminative dictionary-learning fuzzy classifier for medical imaging. Appl Intell 52, 7201–7217 (2022). https://doi.org/10.1007/s10489-021-02781-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02781-w

Keywords