Skip to main content
Log in

Dimensionality reduction of SPD data based on Riemannian manifold tangent spaces and local affinity

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Non-Euclidean data is increasingly used in practical applications. As a typical representative, Symmetric Positive Definite (SPD) matrices can form a Riemannian manifold rather than a flat linear space. Hence, constructing a dimensionality reduction (DR) algorithm for SPD data directly on manifolds will encounter difficulties in modeling and solving. This paper proposes a novel DR technique based on Riemannian Manifold Tangent Spaces and Local Affinity for SPD data (RMTSLA-SPDDR). Our primary contributions are listed below: (1) We transfer the data from SPD manifolds to tangent spaces, which are all Euclidean spaces. Besides, the tangent spaces are symmetric matrix spaces, which indicates the proposed method greatly preserves the data form and properties; (2) Under the Affine-Invariant Riemannian Metric (AIRM), we incorporate tangent spaces and log transformation, so as to keep the geodesic distance between SPD data and the identity matrix equal to the corresponding Euclidean distance between the transformed data and the origin of the tangent space; (3) The method adopts the local affinity criterion to determine the bilinear transformation between tangent spaces, and take it as the transformation for SPD data consequently. There are no similar reports as the technique presented in this paper before, which means it is a new attempt. On five benchmark datasets, abundant experimental results indicate RMTSLA-SPDDR outperforms the other five state-of-the-art DR methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Jayasumana S, Hartley R, Salzmann M, li H, Harandi M (2014) Kernel methods on Riemannian manifolds with Gaussian RBF kernels. IEEE Trans Pattern Anal Mach Intell, 37

  2. Arsigny V, Fillard P, Pennec X, Ayache N (2005) Fast and simple computations on tensors with log-Euclidean Metrics. INRIA Res Rep

  3. Huang Z, Wang R, Li X, Liu W, Shan S, Gool LV, Chen X (2018) Geometry-aware similarity learning on SPD manifolds for visual recognition. IEEE Trans Circ Syst Vid Technol 28(10):2513–2523. https://doi.org/10.1109/TCSVT.2017.2729660

    Article  Google Scholar 

  4. Harandi M, Salzmann M, Hartley R (2018) Dimensionality reduction on SPD manifolds: the emergence of geometry-aware methods. IEEE Trans Pattern Anal Mach Intell 40(1):48–62. https://doi.org/10.1109/TPAMI.2017.2655048

    Article  Google Scholar 

  5. Huang Z, Wang R, Shan S, Gool LV, Chen X (2018) Cross Euclidean-to-Riemannian metric learning with application to face recognition from video. IEEE Trans Pattern Anal Mach Intell 40(12):2827–2840. https://doi.org/10.1109/TPAMI.2017.2776154

    Article  Google Scholar 

  6. Harandi MT, Hartley R, Lovell B, Sanderson C (2016) Sparse coding on symmetric positive definite manifolds using Bregman divergences. IEEE Trans Neural Netw Learn Syst 27(6):1294–1306. https://doi.org/10.1109/TNNLS.2014.2387383

    Article  Google Scholar 

  7. Carreira J, Caseiro R, Batista J, Sminchisescu C (2015) Free-form region description with second-order pooling. IEEE Trans Pattern Anal Mach Intell 37(6):1177–1189. https://doi.org/10.1109/TPAMI.2014.2361137

    Article  Google Scholar 

  8. Zhang T, Zheng W, Cui Z, Li C (2018) Deep manifold-to-manifold transforming network. In: 2018 25th IEEE international conference on image processing (ICIP), pp 4098–4102. https://doi.org/10.1109/ICIP.2018.8451626

  9. Guo K, Ishwar P, Konrad J (2013) Action recognition from video using feature covariance matrices. IEEE Trans Image Process 22(6):2479–2494. https://doi.org/10.1109/TIP.2013.2252622

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang H, Wang Q, Gao M, Li P, Zuo W Multi-scale location-aware kernel representation for object detection. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, 18-23 June 2018 2018, pp 1248–1257. https://doi.org/10.1109/CVPR.2018.00136

  11. Zhang J, Zhou L, Wang L, Li W (2015) Functional brain network classification with compact representation of SICE matrices. IEEE Trans Biomed Eng 62(6):1623–1634. https://doi.org/10.1109/TBME.2015.2399495

    Article  Google Scholar 

  12. Huang Z, Wang R, Shan S, Li X, Chen X (2015) Log-Euclidean metric learning on symmetric positive definite manifold with application to image set classification. In: International conference on machine learning PMLR, pp 720–729

  13. Zhang J, Wang L, Zhou L, Li W (2016) Learning discriminative stein kernel for SPD matrices and its applications. IEEE Trans Neural Netw Learn Syst 27(5):1020–1033. https://doi.org/10.1109/TNNLS.2015.2435154

    Article  MathSciNet  Google Scholar 

  14. Gao Z, Wu Y, Harandi M, Jia Y (2020) A robust distance measure for similarity-based classification on the SPD manifold. IEEE Trans Neural Netw Learn Syst 31(9):3230–3244. https://doi.org/10.1109/TNNLS.2019.2939177

    Article  MathSciNet  Google Scholar 

  15. Wang W, Wang R, Huang Z, Shan S, Chen X (2018) Discriminant analysis on Riemannian manifold of Gaussian distributions for face recognition with image sets. IEEE Trans Image Process 27(1):151–163. https://doi.org/10.1109/TIP.2017.2746993

    Article  MathSciNet  MATH  Google Scholar 

  16. Ren J, Wu XJ (2020) Probability distribution-based dimensionality reduction on Riemannian manifold of SPD matrices. IEEE Access 8:153881–153890. https://doi.org/10.1109/ACCESS.2020.3017234

    Article  Google Scholar 

  17. Xu C, Lu C, Gao J, Zheng W, Wang T, Yan S (2015) Discriminative analysis for symmetric positive definite matrices on lie groups. IEEE Trans Circ Syst Video Technol 25(10):1576–1585. https://doi.org/10.1109/TCSVT.2015.2392472

    Article  Google Scholar 

  18. Xie X, Yu Z, Gu Z, Li Y (2018) Classification of symmetric positive definite matrices based on bilinear isometric Riemannian embedding. Pattern Recogn, 87

  19. Absil P-A, Mahony R, Sepulchre R (2008) Optimization algorithms on matrix manifolds, vol 78. https://doi.org/10.1515/9781400830244

  20. Huang Z, Van Gool L (2017) A riemannian network for spd matrix learning. In: Thirty-First AAAI conference on artificial intelligence

  21. Dong Z, Jia S, Zhang C, Pei M, Wu Y (2017) Deep manifold learning of symmetric positive definite matrices with application to face recognition. In: AAAI

  22. Leibe B, Schiele B (2003) Analyzing appearance and contour based methods for object categorization. In: 2003 IEEE Computer society conference on computer vision and pattern recognition. Proceedings., 18-20 June 2003, pp II-409. https://doi.org/10.1109/CVPR.2003.1211497

  23. Müller M, Röder T, Clausen M, Eberhardt B, Krüger B, Weber A (2007) Documentation Mocap database HDM05

  24. Hussein M, Torki M, Gowayyed M, El Saban M (2013) Human action recognition using a temporal hierarchy of covariance descriptors on 3D joint locations

  25. Chan AB, Vasconcelos N (2005) Probabilistic kernels for the classification of auto-regressive visual processes. In: 2005 IEEE Computer society conference on computer vision and pattern recognition (CVPR’05), 20-25 June 2005, vol 841, pp 846–851. https://doi.org/10.1109/CVPR.2005.279

  26. Harandi M, Salzmann M, Baktashmotlagh M (2015) Beyond Gauss: image-set matching on the Riemannian manifold of PDFs. In: 2015 IEEE International conference on computer vision (ICCV), 7-13 Dec. 2015, pp 4112–4120. https://doi.org/10.1109/ICCV.2015.468

  27. Li Y, Wang R, Shan S, Chen X (2015) Hierarchical hybrid statistic based video binary code and its application to face retrieval in TV-series. In: 2015 11th IEEE International conference and workshops on automatic face and gesture recognition (FG), 4-8 May 2015, pp 1–8. https://doi.org/10.1109/FG.2015.7163089

  28. Harandi MT, Sanderson C, Hartley R, Lovell BC (2012) Sparse coding and dictionary learning for symmetric positive definite matrices: a kernel approach. In: Fitzgibbon A, Lazebnik S, Perona P, Sato Y, Schmid C (eds) Computer vision – ECCV 2012. Springer, Berlin, pp 216–229

  29. Zhang L, Zhang L, Tao D, Huang X, Xia G (2013) Nonnegative discriminative manifold learning for hyperspectral data dimension reduction. In: 2013 5th Workshop on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS), 26-28 June 2013, pp 1–4. https://doi.org/10.1109/WHISPERS.2013.8080702

  30. Zhang T, Zheng W, Cui Z, Li C (2018) Deep manifold-to-manifold transforming network. In: 2018 25th IEEE international conference on image processing (ICIP), 7-10 Oct. 2018, pp 4098–4102. https://doi.org/10.1109/ICIP.2018.8451626

  31. Pennec X, Fillard P, Ayache N (2006) A Riemannian framework for tensor computing. Int J Comput Vis 66(1):41–66. https://doi.org/10.1007/s11263-005-3222-z

    Article  MATH  Google Scholar 

  32. Arsigny V, Fillard P, Pennec X, Ayache N (2006) Log-Euclidean metrics for fast and simple calculus on di usion tensors, vol 56

  33. Vemulapalli R, Pillai J, Chellappa R (2013) Kernel learning for extrinsic classification of manifold features

  34. Kalaganis F, Laskaris N, Chatzilari E, Nikolopoulos S, Kompatsiaris I (2019) A Riemannian geometry approach to reduced and discriminative covariance estimation in brain computer interfaces. IEEE Transactions on Biomedical Engineering

  35. Wang R, Chen K-X, Kittler J (2018) Multiple manifolds metric learning with application to image set classification

  36. Khader M, Schiavi E, Hamza AB (2017) A multicomponent approach to nonrigid registration of diffusion tensor images. Appl Intell 46(2):241–253. https://doi.org/10.1007/s10489-016-0833-8

    Article  Google Scholar 

  37. Zhang S, Ma Z, Gan W (2021) Dimensionality reduction for tensor data based on local decision margin maximization. IEEE Trans Image Process 30:234–248. https://doi.org/10.1109/TIP.2020.3034498

    Article  MathSciNet  Google Scholar 

  38. Tao D, Guo Y, Li Y -T, Gao X (2017) Tensor rank preserving discriminant analysis for facial recognition. IEEE Transactions on Image Processing, 1–1

  39. Yadav R, Abhishek Verma S, Venkatesan S (2021) Cross-covariance based affinity for graphs. Appl Intell 51:1–21. https://doi.org/10.1007/s10489-020-01986-9

    Article  Google Scholar 

  40. Li C, Huang Y, Huang W, Qin F (2021) Learning features from covariance matrix of gabor wavelet for face recognition under adverse conditions. Pattern Recogn 119:108085. https://doi.org/10.1016/j.patcog.2021.108085

    Article  Google Scholar 

  41. Cid YD, Müller H, Platon A, Poletti P, Depeursinge A (2017) 3D solid texture classification using locally-oriented wavelet transforms. IEEE Trans Image Process 26(4):1899–1910. https://doi.org/10.1109/TIP.2017.2665041

    Article  MathSciNet  MATH  Google Scholar 

  42. Chlingaryan A, Melkumyan A, Murphy RJ, Schneider S (2016) Automated multi-class classification of remotely sensed hyperspectral imagery via gaussian processes with a non-stationary covariance function. Mathem Geosci 48(5):537–558. https://doi.org/10.1007/s11004-015-9622-x

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang T, Zheng W, Cui Z, Zong Y, Li C, Zhou X, Yang J (2020) Deep manifold-to-manifold transforming network for skeleton-based action recognition. IEEE Trans Multimed 22(11):2926–2937. https://doi.org/10.1109/TMM.2020.2966878

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengming Ma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Ma, Z., Xiong, C. et al. Dimensionality reduction of SPD data based on Riemannian manifold tangent spaces and local affinity. Appl Intell 53, 1887–1911 (2023). https://doi.org/10.1007/s10489-022-03177-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03177-0

Keywords

Navigation