Skip to main content
Log in

Optimal trajectories of multi-UAVs with approaching formation for target tracking using improved Harris Hawks optimizer

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this paper, we propose an improved Harris hawks optimizer (IHHO) to track remote targets and study the influence of the relative range on optimal multi-UAV trajectories. First, the receding horizon control (RHO) method is utilized as a framework to plan the optimal trajectories of UAVs, the purpose of which is to minimize the uncertainty of target state estimation with performance constraints and risk (stay out) constraints. Second, the IHHO algorithm, with the advantages of strong global search ability and good stability, is presented to solve the RHO formulation. Moreover, the influence of the relative range on the optimal trajectory for multiple UAVs is analyzed. Finally, the proposed method is simulated with multiple UAVs, and the trend of the optimal trajectory is summarized. The results show that the proposed IHHO provides the best value in more than 80% of cases and the lowest deviations in more than 90% of cases compared to other methods. The simulation results validate the effectiveness of the proposed method, and the trends in coordinated reconnaissance can provide a helpful reference for designing multi-UAV control laws with optimal observation trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yang L, Kang T, Pan Q, Zhao C, Jinwen H U (2019) Uav sense and avoidance: concepts, technologies, and systems. Scientia Sinica Informationis 49(5):520–5379

    Article  Google Scholar 

  2. Choe R, Puig-Navarro J, Cichella V, Xargay E, Hovakimyan N (2016) Cooperative trajectory generation using pythagorean hodograph bézier curves. J Guid Control Dyn 39(8):1744–1763

    Article  Google Scholar 

  3. He S, Shin H-S, Tsourdos A (2020) Trajectory optimization for multitarget tracking using joint probabilistic data association filter. J Guid Control Dyn 43(1):170–178

    Article  Google Scholar 

  4. Frew EW, Lawrence DA, Morris S (2008) Coordinated standoff tracking of moving targets using lyapunov guidance vector fields. J Guid Control Dyn 31(2):290–306

    Article  Google Scholar 

  5. Lim S, Kim Y, Lee D, Bang H (2013) Standoff target tracking using a vector field for multiple unmanned aircrafts. Journal of Intelligent & Robotic Systems 69(1):347–360

    Article  Google Scholar 

  6. Zhao S, Chen BM, Lee TH (2014) Optimal deployment of mobile sensors for target tracking in 2d and 3d spaces. IEEE/CAA Journal of Automatica Sinica 1(1):24–30

    Article  Google Scholar 

  7. Song Z-Q, Li H-X, Chen C-L, Zhou X-Z, Xu F (2014) Coordinated standoff tracking of moving targets using differential geometry. Journal of Zhejiang University SCIENCE C 15(4):284–292

    Article  Google Scholar 

  8. Yao P, Wang H, Su Z (2016) Cooperative path planning with applications to target tracking and obstacle avoidance for multi-uavs. Aerosp Sci Technol 54:10–22

    Article  Google Scholar 

  9. Ousingsawat J, Campbell ME (2007) Optimal cooperative reconnaissance using multiple vehicles. J Guid Control Dyn 30(1):122–132

    Article  Google Scholar 

  10. Kim S, Oh H, Tsourdos A (2013) Nonlinear model predictive coordinated standoff tracking of moving ground vehicle. Journal of Guidance Control and Dynamics 36(2):557–566

    Article  Google Scholar 

  11. Roh H, Cho MH, Tahk MJ (2018) Trajectory optimization using cramér-rao lower bound for bearings-only target tracking. In: 2018 AIAA Guidance, Navigation, and Control Conference

  12. Uluskan S (2020) Noncausal trajectory optimization for real-time range-only target localization by multiple uavs. Aerosp Sci Technol 99:105558

    Article  Google Scholar 

  13. Xu S, Doğançay K (2017) Optimal sensor placement for 3-d angle-of-arrival target localization. IEEE Trans Aerosp Electron Syst 53(3):1196–1211

    Article  Google Scholar 

  14. Zhang Z, Li J, Wang J (2018) Sequential convex programming for nonlinear optimal control problems in uav path planning. Aerosp Sci Technol 76:280–290

    Article  Google Scholar 

  15. Wang D, Huang D, Xu C, Han W (2021) A closed-form method for simultaneous target localization and uav trajectory optimization. Appl Sci 11(1):114

    Article  Google Scholar 

  16. Di B, Zhou R, Duan H (2015) Potential field based receding horizon motion planning for centrality-aware multiple uav cooperative surveillance. Aerosp Sci Technol 46:386– 397

    Article  Google Scholar 

  17. Yingxun W, Zhang T, Zhihao C, Jiang Z, Kun W (2020) Multi-uav coordination control by chaotic grey wolf optimization based distributed mpc with event-triggered strategy. Chin J Aeronaut 33(11):2877–2897

    Article  Google Scholar 

  18. Koohifar F, Kumbhar A, Guvenc I (2016) Receding horizon multi-uav cooperative tracking of moving rf source. IEEE Commun Lett 21(6):1433–1436

    Article  Google Scholar 

  19. de Almeida FA (2019) Constrained dynamic compensation with model predictive control for tracking. Aerosp Sci Technol 93:105340

    Article  Google Scholar 

  20. Mirjalili S (2015) The ant lion optimizer. Advances in engineering software 83:80–98

    Article  Google Scholar 

  21. Feng L, Liu L, Wang Y (2015) Trajectories optimization of hypersonic vehicle based on a hybrid optimization algorithm of pso and sqp. In: The 27th Chinese Control and Decision Conference (2015 CCDC), IEEE, pp 4518–4522

  22. Chai R, Savvaris AL, Tsourdos A (2017) Violation learning differential evolution-based hp-adaptive pseudospectral method for trajectory optimization of space maneuver vehicle. IEEE Trans Aerosp Electron Syst 53(4):2031–2044

    Article  Google Scholar 

  23. Zhang H, Wang H, Li N, Yu Y, Su Z, Liu Y (2020) Time-optimal memetic whale optimization algorithm for hypersonic vehicle reentry trajectory optimization with no-fly zones. Neural Comput & Applic 32 (7):2735–2749

    Article  Google Scholar 

  24. Kim J-J, Lee J-J (2015) Trajectory optimization with particle swarm optimization for manipulator motion planning. IEEE Transactions on Industrial Informatics 11(3):620– 631

    Article  Google Scholar 

  25. Yao P, Wang H, Ji H (2016) Multi-uavs tracking target in urban environment by model predictive control and improved grey wolf optimizer. Aerosp Sci Technol 55:131–143

    Article  Google Scholar 

  26. Huang H, Dong K, Yan T, Han B (2020) Tactical maneuver trajectory optimization for unmanned combat aerial vehicle using improved differential evolution. Soft Comput 24(8):5959– 5970

    Article  Google Scholar 

  27. Liu W, Zheng X (2020) Three-dimensional multi-mission planning of uav using improved ant colony optimization algorithm based on the finite-time constraints. International Journal of Computational Intelligence Systems 14(1):79–87

    Article  Google Scholar 

  28. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: Algorithm and applications. Future generation computer systems 97:849–872

    Article  Google Scholar 

  29. Jia H, Lang C, Oliva D, Song W, Peng X (2019) Dynamic harris hawks optimization with mutation mechanism for satellite image segmentation. Remote sensing 11(12):1421

    Article  Google Scholar 

  30. Jiao S, Chong G, Huang C, Hu H, Wang M, Heidari AA, Chen H, Zhao X (2020) Orthogonally adapted harris hawks optimization for parameter estimation of photovoltaic models. Energy 203:117804

    Article  Google Scholar 

  31. Abd Elaziz M, Heidari AA, Fujita H, Moayedi H (2020) A competitive chain-based harris hawks optimizer for global optimization and multi-level image thresholding problems. Appl Soft Comput 95:106347

    Article  Google Scholar 

  32. Hu H, Ao Y, Bai Y, Cheng R, Xu T (2020) An improved harris’s hawks optimization for sar target recognition and stock market index prediction. IEEE Access 8:65891–65910

    Article  Google Scholar 

  33. Oh H, Kim S (2019) Persistent standoff tracking guidance using constrained particle filter for multiple uavs. Aerosp Sci Technol 84:257–264

    Article  Google Scholar 

  34. Li S, Wang X (2013) Finite-time consensus and collision avoidance control algorithms for multiple auvs. Automatica 49(11):3359–3367

    Article  MathSciNet  Google Scholar 

  35. Wang L (2011) Modeling and optimization multi-uavs cooperative target tracking. A thesis for degree of Doctor of Engineering, National University of Defense Technology

  36. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Advances in engineering software 69:46–61

    Article  Google Scholar 

  37. Shi Y, et al. (2001) Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546), vol 1, IEEE, pp 81–86

  38. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Advances in engineering software 95:51–67

    Article  Google Scholar 

  39. Zhang Y, Zhou X, Shih P-C (2020) Modified harris hawks optimization algorithm for global optimization problems. Arab J Sci Eng 45(12):10949–10974

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their acknowledgement for the support from the National Natural Science Foundation of China (No. 61773395). We also acknowledge the efforts and constructive comments of anonymous reviewers and respected editor for handling this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoran Shi.

Ethics declarations

Conflict of Interests

The authors declare that they do not have any conflicts of interest to this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Lu, F., Wu, L. et al. Optimal trajectories of multi-UAVs with approaching formation for target tracking using improved Harris Hawks optimizer. Appl Intell 52, 14313–14335 (2022). https://doi.org/10.1007/s10489-022-03270-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03270-4

Keywords

Navigation