Skip to main content
Log in

A new comprehensive automatic fault detection method for rotating machinery using HmvAAPE and VNWOA-KELM

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In order to efficiently and automatically identify the faults of rotating machinery, so as to avoid the dangers and losses caused by them, this paper proposes a new fault feature extraction method for rotating machinery named Hierarchical Multi-variate Amplitude-aware Permutation Entropy (HmvAAPE), which has integrated the advantages of Amplitude-aware Permutation Entropy (AAPE), multi-channel analysis method and hierarchical decomposition method. Therefore, the features extracted by this feature extraction method can contain more complete fault information. The t-SNE algorithm is chosen to conduct dimensional reduction of features and the Kernel Extreme Learning Machine optimized by Von Neumann Topology Whale Optimization Algorithm (VNWOA-KELM) is proposed to learn fault characteristics and classify faults automatically. By designing bearing and gearbox fault experiments and collecting their fault data to verify the effectiveness of the proposed method, it can be obtained that the average classification accuracy of this method can reach 98.9%. Through comparative experiments, conclusions can be made that this method can get both higher accuracy and higher stability at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gao Q, Duan C, Fan H, Meng Q (2008) Rotating machine fault diagnosis using empirical mode decomposition. Mech Syst Signal Process 22(5):1072–1081

    Article  Google Scholar 

  2. Zhao K, Jiang H, Li X, Wang R (2021) Ensemble adaptive convolutional neural networks with parameter transfer for rotating machinery fault diagnosis. Int J Mach Learn Cybern 12(5):1–17

    Article  Google Scholar 

  3. Huo Z, Zhang Y, Jombo G, Shu L (2020) Adaptive multiscale weighted permutation entropy for rolling bearing fault diagnosis. IEEE Access 8:87529–87540

    Article  Google Scholar 

  4. Duhamel P, Vetterli MJSP (1990) Fast fourier transforms: a tutorial review and a state of the art. Signal Process 19(4):259–299

    Article  MathSciNet  MATH  Google Scholar 

  5. Kwok KH, Jones DL (2000) Improved instantaneous frequency estimation using an adaptive short-time fourier transform. IEEE Trans Signal Proc 48(10):2964–2972

  6. Hazarika N, Chen JZ, Tsoi AC, Sergejew A (1997) Wavelet Transform. Signal Process 59(1):61–72

    Article  MATH  Google Scholar 

  7. Fan X, Zuo MJ (2006) Gearbox fault detection using Hilbert and wavelet packet transform. Mech Syst Signal Process 20(4):966–982

    Article  Google Scholar 

  8. Cai YP, Li AH, Shi L, Bai XF, Shen JW (2011) Roller bearing fault detection using improved envelope spectrum analysis based on EMD and spectrum kurtosis. J Vib Shock 30(2):168–172

    Google Scholar 

  9. Baydar N, Ball A (2001) A comparative study of acoustic and vibration signals in detection of gear failures using Wigner-Ville distribution. Mech Syst Signal Process 15(6):1091–1107

    Article  Google Scholar 

  10. Dorfman JR (1999) An Introduction to Chaos in Nonequilibrium Statistical Mechanics: Kolmogorov–Sinai entropy, 9th edn. Cambridge University Press, Cambridge, pp 118–128. https://doi.org/10.1017/CBO9780511628870

    Book  Google Scholar 

  11. Pincus SM (1991) Approximate entropy: a complexity measure for biological time series data. Bioengineering Conference. IEEE

  12. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Phys Heart Circ Phys 278(6):H2039

    Google Scholar 

  13. Bandt C, Pompe B (2002) Permutation Entropy: A Natural Complexity Measure for Time Series. Phys Rev Lett 88(17):174102

    Article  Google Scholar 

  14. Yan R, Gao RX (2007) Approximate Entropy as a diagnostic tool for machine health monitoring. Mech Syst Signal Process 21(2):824–839

    Article  MathSciNet  Google Scholar 

  15. Azami et al (2016) Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation. Comput Methods Programs Biomed 128(2016):40–51

  16. Chen Y, Zhang T, Zhao W, Luo Z, Sun K (2019) Fault Diagnosis of Rolling Bearing Using Multiscale Amplitude-Aware Permutation Entropy and Random Forest. Algorithms 12(9):184

    Article  Google Scholar 

  17. Ying J, Peng CK, Xu Y (2011) Hierarchical entropy analysis for biological signals. J Comput Appl Math 236(5):728–742

    Article  MathSciNet  MATH  Google Scholar 

  18. Costa M, Goldberger AL, Peng CK (2007) Multiscale Entropy Analysis of Complex Physiologic Time Series. Phys Rev Lett 89(6):705–708

    Google Scholar 

  19. Zhu K, Song X, Xue DJM (2014) A roller bearing fault diagnosis method based on hierarchical entropy and support vector machine with particle swarm optimization algorithm. Measurement 47:669–675

    Article  Google Scholar 

  20. Yan X, Liu Y, Huang D, and Jia M, (2020) A new approach to health condition identification of rolling bearing using hierarchical dispersion entropy and improved Laplacian score. Struct Health Monit. https://doi.org/10.1177/1475921720948620

  21. Ahmed MU, Mandic DP (2011) Multivariate multiscale entropy: A tool for complexity analysis of multichannel data. Phys Rev E 84(6 Pt 1):061918

    Article  Google Scholar 

  22. Gan M, Wang C, Zhu C (2015) Fault feature enhancement for rotating machinery based on quality factor analysis and manifold learning. J Intell Manuf 29:1–18

    Google Scholar 

  23. Jia F, Guo Y, He X (2019) Rotating machinery fault diagnosis based on manifold learning using semi-supervised local linear embedding. 2019 Chinese Control Conference (CCC)

  24. Jiang Q, Jia M, Hu J, Xu F (2009) Machinery fault diagnosis using supervised manifold learning. Mech Syst Signal Process 23(7):2301–2311

    Article  Google Scholar 

  25. Zheng J, Jiang Z, Pan H (2018) Sigmoid-based refined composite multiscale fuzzy entropy and t-SNE based fault diagnosis approach for rolling bearing. Measurement 129:332–342

    Article  Google Scholar 

  26. Kang S, Qiao C, Wang Y, Wang Q, Mikulovich VI (2020) Fault diagnosis method of rolling bearings under varying working conditions based on deep feature transfer. J Mech Sci Technol 34(11):4383–4391

    Article  Google Scholar 

  27. Ye T, Jian M, Chen L, Wang Z (2015) Rolling bearing fault diagnosis under variable conditions using lmd-svd and extreme learning machine. Mech Mach Theory 90:175–186

  28. Pei F, Chen X. Z, Zhu Y. L, Bing-Jie YZ, Transformer fault diagnosis based on particle swarm optimization and kernel-based extreme learning machine. Computer Engineering and Design

  29. Pang S, Yang X, Zhang X, Lin X (2020) Fault diagnosis of rotating machinery with ensemble kernel extreme learning machine based on fused multi-domain features. ISA Trans 98:320–337

    Article  Google Scholar 

  30. Song K, Ding J, Lin J (2018) Rolling bearing fault diagnosis with modified fisher criterion,vmd,distance correlation coefficients and kernel extreme learning machine. Railway Locomotive & Car

  31. Chao MA, Zhang YT, Zhi-Ning LI (2014) Engine characteristic parameters prediction based on pso-kelm. Control Engineering of China

  32. Mei Y et al., (2019) "Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM

    Book  Google Scholar 

  33. Wei-Guo WU, Yang JL, Geng J, Xian CH (2019) Risk assessment of central hospital information system vulnerabilities based on woa-kelm. Information Technology

  34. Azami H, Escudero J (2016) Amplitude-aware permutation entropy: illustration in spike detection and signal segmentation. Comput Methods Prog Biomed 128:40–51. https://doi.org/10.1016/j.cmpb.2016.02.008

    Article  Google Scholar 

  35. Jiang Y, Peng CK, Xu Y (2011) Hierarchical entropy analysis for biological signals. J Comput Appl Math 236(5):728–742. https://doi.org/10.1016/j.cam.2011.06.007

    Article  MathSciNet  MATH  Google Scholar 

  36. Christopher, Heil (1993) Ten lectures on wavelets (ingrid daubechies). Siam Review

  37. Micchelli CA, Xu Y (1994) Using the Matrix Refinement Equation for the Construction of Wavelets on Invariant Sets. Appl Comput Harmon Anal 1(4):391–401

    Article  MathSciNet  MATH  Google Scholar 

  38. Laurens VDM, Hinton G (2008) Visualizing Data using t-SNE. J Mach Learn Res 9(2605):2579–2605

    MATH  Google Scholar 

  39. Hinton G, Roweis S (2003) Stochastic Neighbor Embedding. Adv Neural Inf Proces Syst 15(4):833–840

    Google Scholar 

  40. Balasubramanian M, Schwartz EL (2002) The Isomap Algorithm and Topological Stability. Science 295(5552):7a

    Article  Google Scholar 

  41. Sibson R (1979) Studies in the robustness of multidimensional scaling : Perturbational analysis of classical scal-i. J R Stat Soc Ser B Methodol 41(2):217–229

    MathSciNet  MATH  Google Scholar 

  42. Li X, Zheng A, Zhang X, Li C, Zhang LJM (2013) Rolling element bearing fault detection using support vector machine with improved ant colony optimization. Measurement 46(8):2726–2734

    Article  Google Scholar 

  43. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  44. Cao Y, Tung WW, Gao JB, Protopopescu VA, Hively LM (2004) Detecting dynamical changes in time series using the permutation entropy. Phys Rev E 70(4 Pt 2):046217

    Article  MathSciNet  Google Scholar 

  45. Zhang X, Liang Y, Zhou J (2015) A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM. Measurement 69:164–179

    Article  Google Scholar 

  46. Li Y, Li G, Yang Y, Liang X, Xu M (2018) A fault diagnosis scheme for planetary gearboxes using adaptive multi-scale morphology filter and modified hierarchical permutation entropy. Mech Syst Signal Process 105:319–337

    Article  Google Scholar 

  47. Sharma V (2020) Gear fault detection based on instantaneous frequency estimation using variational mode decomposition and permutation entropy under real speed scenarios. Wind Energy

  48. Zhou S, Qian S, Chang W, Xiao Y, Cheng Y (2018) A Novel Bearing Multi-Fault Diagnosis Approach Based on Weighted Permutation Entropy and an Improved SVM Ensemble Classifier. Sensors 18(6):1934

    Article  Google Scholar 

  49. Fz A, Jh B, Yang X (2021) Multivariate hierarchical multiscale fluctuation dispersion entropy: Applications to fault diagnosis of rotating machinery. Appl Acoust 182(1–2):108271

    Google Scholar 

  50. Wang R, Zhang Z, Xia Z, Miao J, Guo Y (2019) A new approach for rolling bearing fault diagnosis based on EEMD hierarchical entropy and improved CS-SVM. 2019 Prognostics and System Health Management Conference (PHM-Qingdao)

  51. Wang X, Si S, and Li Y, (2021) Hierarchical diversity entropy for the early fault diagnosis of rolling bearing. https://doi.org/10.1007/s11071-021-06728-1

  52. Zhou F, Shen J, Yang X, Liu X, Liu W (2020) Modified Hierarchical Multiscale Dispersion Entropy and its Application to Fault Identification of Rotating Machinery. IEEE Access 8:161361–161376

    Article  Google Scholar 

  53. Cerrada M, Zurita G, Cabrera D, Sanchez RV, Artes M, Li C (2016) Fault diagnosis in spur gears based on genetic algorithm and random forest. Mech Syst Signal Process s70–71:87–103

  54. Chen GC, Yu J-S (2005) Particle Swarm Optimization Algorithm. Inf Control 186(3):454–458

    Google Scholar 

  55. Xiao J, Zheng X, Wang X, Huang Y, (2006) A modified artificial fish-swarm algorithm. 1:3456–3460

  56. Xin Z, Liu Z, Qiang M, Lei W (2018) Bearing fault diagnosis using a whale optimization algorithm-optimized orthogonal matching pursuit with a combined time–frequency atom dictionary. Mech Syst Signal Process 107(JUL):29–42

    Google Scholar 

  57. Yang Y, Zheng H, Yin J, Xu M, Chen YJM (2019) Refined composite multivariate multiscale symbolic dynamic entropy and its application to fault diagnosis of rotating machine. Measurement 151:107233

    Article  Google Scholar 

  58. Ma Y, Cheng J, Wang P, Wang J, Yang Y (2021) Rotating machinery fault diagnosis based on multivariate multiscale fuzzy distribution entropy and Fisher score. Measurement 179(1):109495

    Article  Google Scholar 

  59. Zhaohui et al (2011) Characterization of the causality between spike trains with permutation conditional mutual information. Phys Rev 84(2):21929

    Google Scholar 

  60. Kaufmann A, Kraf B, Michaleksauberer A, Weigl L (2008) Using permutation entropy to measure the electroencephalographic effects of sevoflurane. Anesthesiology 109(3):448

    Article  Google Scholar 

  61. Graff B, Graff G, Kaczkowska A (2012) Entropy Measures of Heart rate variability for short ecg datasets in patients with congestive heart failure. Phys Pol B Proc Suppl 5(1):153–158

    Article  MATH  Google Scholar 

  62. Zunino L, Zanin M, Tabak BM, Pérez D, Rosso OA (2009) Forbidden patterns, permutation entropy and stock market inefficiency. Physica A: Stat Mech Appl 388(14):2854–2864

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Han.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Yang, X., Han, J. et al. A new comprehensive automatic fault detection method for rotating machinery using HmvAAPE and VNWOA-KELM. Appl Intell 53, 204–225 (2023). https://doi.org/10.1007/s10489-022-03505-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03505-4

Keywords

Navigation