Skip to main content
Log in

PERSIST: Improving micro-expression spotting using better feature encodings and multi-scale Gaussian TCN

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Micro-expression (ME) is required in real-world applications for understanding true human feeling. The preliminary step of ME analysis, ME spotting, is highly challenging for human experts because MEs induce subtle facial movements for a short duration. Moreover, the existing feature encodings are insufficient for spotting because they are affected by illumination and eye-blinking. These issues are alleviated for better ME spotting by our proposed method, PERSIST, that is, imProved fEatuRe encodingS and multIscale gauSsian Temporal convolutional network. It investigates the possibility of human gaze deformations for spotting. In contrast to the well-known sequence models like RNN and LSTM, it explores the feasibility of a temporal convolutional network to model long-term dependencies in a better way. Furthermore, the proposed network efficacy is significantly improved by adding a Gaussian filter layer and performing multi-resolution analysis. Experimental results conducted on publicly available ME spotting databases reveal that our method PERSIST outperforms the well-known methods. It also indicates that eyebrow information is helpful in ME spotting when eye-blinking artifacts are mitigated, and human gaze information can be consolidated with other encodings for performance improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

All the datasets used for performance evaluation are publicly available. Anyone can obtain these datasets after signing the agreement. The relevant links are provided in the manuscript to obtain the datasets.

Code Availability

The software application will be made available after paper acceptance.

References

  1. Shukla J, Gupta P, Bera A, Sarkar A, Goel P, Butta S, Gupta AK, Sanyal S, Neog DR, Bhuyan MK, et al (2021) Contextual emotion learning challenge. In: IEEE International conference on automatic face and gesture recognition (FG). https://doi.org/10.1109/FG52635.2021.9667034, IEEE, pp 1–7

  2. Gupta P, Bhowmick B, Pal A (2018) Exploring the feasibility of face video based instantaneous heart-rate for micro-expression spotting. In: IEEE Conference on computer vision and pattern recognition workshops (CVPRW). https://doi.org/10.1109/CVPRW.2018.00179, pp 1316–1323

  3. Zhang X, Xu T, Sun W, Song A (2020) Multiple source domain adaptation in micro-expression recognition. Journal of Ambient Intelligence and Humanized Computing, pp 1–16. https://doi.org/10.1007/s12652-020-02569-9

  4. Gupta P (2021) MERASTC: Micro-expression recognition using effective feature encodings and 2D convolutional neural network. IEEE Trans Affect Comput, https://doi.org/10.1109/TAFFC.2021.3061967

  5. Joho H, Jose JM, Valenti R, Sebe N (2009) Exploiting facial expressions for affective video summarisation. In: ACM international conference on image and video retrieval (CIVR). https://doi.org/10.1145/1646396.1646435, ACM, p 31

  6. Ekman P (2009) Lie catching and microexpressions. The philosophy of deception, pp 118–133. https://doi.org/10.1093/acprof:oso/9780195327939.003.0008https://doi.org/10.1093/acprof:oso/9780195327939.003.0008

  7. Haggard EA, Isaacs KS (1966) Micromomentary facial expressions as indicators of ego mechanisms in psychotherapy. In: Methods of research in psychotherapy. Springer, pp 154– 165

  8. Ben X, Ren Y, Zhang J, Wang S-J, Kpalma K, Meng W, Liu Y-J (2021) Video-based facial micro-expression analysis: A survey of datasets, features and algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, https://doi.org/10.1109/TPAMI.2021.3067464

  9. Frank MG, Herbasz M, Sinuk K, Keller A, Nolan C (2009) I see how you feel: Training laypeople and professionals to recognize fleeting emotions. In: The annual meeting of the international communication association. Sheraton New York, New York City, pp 1–35

  10. Moilanen A, Zhao G, Pietikäinen M (2014) Spotting rapid facial movements from videos using appearance-based feature difference analysis. In: IEEE International conference on pattern recognition (ICPR). https://doi.org/10.1109/ICPR.2014.303, IEEE, pp 1722–1727

  11. Esmaeili V, Shahdi SO (2020) Automatic micro-expression apex spotting using Cubic-LBP. Multimedia Tools and Applications, pp 1–19. https://doi.org/10.1007/s11042-020-08737-5

  12. Guo Y, Li B, Ben X, Ren Y, Zhang J, Yan R, Li Y (2021) A magnitude and angle combined optical flow feature for micro-expression spotting. IEEE MultiMedia, https://doi.org/10.1109/MMUL.2021.3058017

  13. Li X, Xiaopeng HONG, Moilanen A, Huang X, Pfister T, Zhao G, Pietikainen M (2017) Towards reading hidden emotions: A comparative study of spontaneous micro-expression spotting and recognition methods. IEEE Trans Affect Comput 9(4):563–577. https://doi.org/10.1109/TAFFC.2017.2667642

    Article  Google Scholar 

  14. Li J, Soladie C, Seguier R, Wang S-J, Yap MH (2019) Spotting micro-expressions on long videos sequences. In: IEEE International conference on automatic face & gesture recognition (FG). https://doi.org/10.1109/FG.2019.8756626, IEEE, pp 1–5

  15. He Y, Wang S-J, Li J, Yap MH (2020) Spotting macro-and micro-expression intervals in long video sequences. In: International conference on automatic face & gesture recognition, (FG). https://doi.org/10.1109/FG47880.2020.00036, IEEE, pp 742–748

  16. Oh Y-H, See J, Le Ngo AC, Phan RC-W, Baskaran VM (2018) A survey of automatic facial micro-expression analysis: databases, methods, and challenges. Frontiers in psychology 9:1128. https://doi.org/10.3389/fpsyg.2018.01128

    Article  Google Scholar 

  17. Yu Z, Zhang C (2015) Image based static facial expression recognition with multiple deep network learning. In: ACM international conference on multimodal interaction (ICMI). https://doi.org/10.1145/2818346.2830595, pp 435–442

  18. Verburg M, Menkovski V (2019) Micro-expression detection in long videos using optical flow and recurrent neural networks. In: IEEE International conference on automatic face & gesture recognition (FG). https://doi.org/10.1109/FG.2019.8756588, IEEE, pp 1–6

  19. Tran T-K, Vo Q-N, Hong X, Zhao G (2019) Dense prediction for micro-expression spotting based on deep sequence model. Electronic Imaging 2019(8):401–1. https://doi.org/10.2352/ISSN.2470-1173.2019.8.IMAWM-401https://doi.org/10.2352/ISSN.2470-1173.2019.8.IMAWM-401

    Google Scholar 

  20. Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. https://arxiv.org/abs/1803.01271

  21. Li X, Pfister T, Huang X, Zhao G, Pietikäinen M (2013) A spontaneous micro-expression database: Inducement, collection and baseline. In: IEEE International conference and workshops on automatic face & gesture recognition (FG). https://doi.org/10.1109/FG.2013.6553717, IEEE, pp 1–6

  22. Yan W-J, Li X, Wang S-J, Zhao G, Liu Y-J, Chen Y-H, Fu X (2014) CASME II: An improved spontaneous micro-expression database and the baseline evaluation. PloS one 9(1):e86041. https://doi.org/10.1371/journal.pone.0086041

    Article  Google Scholar 

  23. Patel D, Zhao G, Pietikäinen M (2015) Spatiotemporal integration of optical flow vectors for micro-expression detection. In: International conference on advanced concepts for intelligent vision systems (ACIVS). https://doi.org/10.1007/978-3-319-25903-1_32, Springer, pp 369–380

  24. Birla L, Gupta P (2022) PATRON: Exploring respiratory signal derived from non-contact face videos for face anti-spoofing. Expert Syst Appl 187:115883. https://doi.org/10.1016/j.eswa.2021.115883https://doi.org/10.1016/j.eswa.2021.115883

    Article  Google Scholar 

  25. Valstar M, Pantic M (2006) Fully automatic facial action unit detection and temporal analysis. In: IEEE Conference on computer vision and pattern recognition workshop (CVPRW). https://doi.org/10.1109/CVPRW.2006.85, IEEE, pp 149–149

  26. Ngo L, Cha J, Han J-H (2019) Deep neural network regression for automated retinal layer segmentation in optical coherence tomography images. IEEE Trans Image Process 29:303–312. https://doi.org/10.1109/tip.2019.2931461

    Article  MathSciNet  MATH  Google Scholar 

  27. Yu X, Zhou Z, Gao Q, Li D, Ríha K (2018) Infrared image segmentation using growing immune field and clone threshold. Infrared Physics & Technology 88:184–193. https://doi.org/10.1016/j.infrared.2017.11.029

    Article  Google Scholar 

  28. Yu X, Lu Y, Gao Q (2021) Pipeline image diagnosis algorithm based on neural immune ensemble learning. Int J Press Vessel Pip 189:104249. https://doi.org/10.1016/j.ijpvp.2020.104249

    Article  Google Scholar 

  29. Wang S-J, He Y, Li J, Fu X (2021) MESNet: A convolutional neural network for spotting multi-scale micro-expression intervals in long videos. IEEE Trans Image Process 30:3956–3969. https://doi.org/10.1109/TIP.2021.3064258

    Article  Google Scholar 

  30. Li J, Soladie C, Seguier R (2020) Local temporal pattern and data augmentation for micro-expression spotting. IEEE Trans Affect Comput, https://doi.org/10.1109/TAFFC.2020.3023821

  31. Takalkar MA, Thuseethan S, Rajasegarar S, Chaczko Z, Xu M, Yearwood J (2021) LGAttNet: Automatic micro-expression detection using dual-stream local and global attentions. Knowl-Based Syst 212:106566. https://doi.org/10.1016/j.knosys.2020.106566

    Article  Google Scholar 

  32. Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) Wavenet: A generative model for raw audio. arXiv:https://arxiv.org/pdf/1609.03499

  33. Mishra S, Gupta AK, Gupta P (2021) DARE: Deceiving audio–visual speech recognition model. Knowl-Based Syst 232:107503. https://doi.org/10.1016/j.knosys.2021.107503

    Article  Google Scholar 

  34. Birla L, Gupta P (2022) AND-rPPG: A novel denoising-rppg network for improving remote heart rate estimation. Comput Biol Med 141:105146. https://doi.org/10.1016/j.compbiomed.2021.105146https://doi.org/10.1016/j.compbiomed.2021.105146

    Article  Google Scholar 

  35. Baltrušaitis T, Robinson P, Morency L-P (2012) 3d constrained local model for rigid and non-rigid facial tracking. In: IEEE Conference on computer vision and pattern recognition (CVPR). https://doi.org/10.1109/CVPR.2012.6247980https://doi.org/10.1109/CVPR.2012.6247980, IEEE, pp 2610–2617

  36. Mavadati SM, Mahoor MH, Bartlett K, Trinh P, Cohn JF (2013) DISFA: A spontaneous facial action intensity database. IEEE Trans Affect Comput 4(2):151–160. https://doi.org/10.1109/T-AFFC.2013.4

    Article  Google Scholar 

  37. Chang KI, Bowyer KW, Flynn PJ (2006) Multiple nose region matching for 3d face recognition under varying facial expression. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10):1695–1700. https://doi.org/10.1109/TPAMI.2006.210https://doi.org/10.1109/TPAMI.2006.210

    Article  Google Scholar 

  38. Gupta P, Bhowmick B, Pal A (2017) Serial fusion of eulerian and lagrangian approaches for accurate heart-rate estimation using face videos. In: IEEE Engineering in medicine and biology society (EMBC). https://doi.org/10.1109/EMBC.2017.8037447, IEEE, pp 2834–2837

  39. Zhang Z (2015) Photoplethysmography-based heart rate monitoring in physical activities via joint sparse spectrum reconstruction. IEEE Trans Biomed Eng 62(8):1902–1910. https://doi.org/10.1109/TBME.2015.2406332

    Article  Google Scholar 

  40. Gupta P, Bhowmick B, Pal A (2020) MOMBAT: Heart rate monitoring from face video using pulse modeling and bayesian tracking. Computers in biology and medicine 121:103813. https://doi.org/10.1016/j.compbiomed.2020.103813

    Article  Google Scholar 

  41. N’diaye K, Sander D, Vuilleumier P (2009) Self-relevance processing in the human amygdala: gaze direction, facial expression, and emotion intensity. Emotion 9(6):798. https://doi.org/10.1037/a0017845

    Article  Google Scholar 

  42. Wood E, Baltrusaitis T, Zhang X, Sugano Y, Robinson P, Bulling A (2015) Rendering of eyes for eye-shape registration and gaze estimation. In: IEEE International conference on computer vision (ICCV). https://doi.org/10.1109/ICCV.2015.428, IEEE, pp 3756–3764

  43. Kotecha JH, Djuric PM (2003) Gaussian sum particle filtering. IEEE Transactions on signal processing 51(10):2602–2612. https://doi.org/10.1109/TSP.2003.816754

    Article  MathSciNet  MATH  Google Scholar 

  44. Jia X, Ben X, Yuan H, Kpalma K, Meng W (2018) Macro-to-micro transformation model for micro-expression recognition. Journal of Computational Science 25:289–297. https://doi.org/10.1016/j.jocs.2017.03.016

    Article  Google Scholar 

  45. Baltrušaitis T, Mahmoud M, Robinson P (2015) Cross-dataset learning and person-specific normalisation for automatic action unit detection. In: IEEE International conference and workshops on automatic face & gesture recognition (FG). https://doi.org/10.1109/FG.2015.7284869, IEEE, pp 1–6

  46. Piergiovanni AJ, Ryoo M (2019) Temporal gaussian mixture layer for videos. In: International conference on machine learning (ICML). https://arxiv.org/pdf/1803.06316, pp 5152–5161

  47. Martinez B, Ma P, Petridis S, Pantic M (2020) Lipreading using temporal convolutional networks. In: IEEE International conference on acoustics, speech and signal processing (ICASSP). https://doi.org/10.1109/ICASSP40776.2020.9053841, IEEE, pp 6319–6323

  48. Qu F, Wang S-J, Yan W-J, Li H, Wu S, Fu X (2017) CAS(ME)2: A database for spontaneous macro-expression and micro-expression spotting and recognition. IEEE Trans Affect Comput 9(4):424–436. https://doi.org/10.1109/TAFFC.2017.2654440

    Article  Google Scholar 

  49. Davison AK, Lansley C, Costen N, Tan K, Yap MH (2016) SAMM: A spontaneous micro-facial movement dataset. IEEE transactions on affective computing 9(1):116–129. https://doi.org/10.1109/TAFFC.2016.2573832

    Article  Google Scholar 

  50. Yap CH, Kendrick C, Yap MH (2020) Samm long videos: A spontaneous facial micro-and macro-expressions dataset. In: IEEE International conference on automatic face & gesture recognition (FG). https://doi.org/10.1109/FG47880.2020.00029https://doi.org/10.1109/FG47880.2020.00029, IEEE, pp 771–776

  51. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36. https://doi.org/10.1148/radiology.143.1.7063747

    Article  Google Scholar 

  52. Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: IEEE international conference on computer vision (ICCV). https://doi.org/10.1109/TPAMI.2018.2858826, IEEE, pp 2980–2988

  53. Chanti DA, Caplier A (2019) ADS-ME: Anomaly detection system for micro-expression spotting. arXiv:https://arxiv.org/abs/1903.04354

  54. Yang B, Wu J, Zhou Z, Komiya M, Kishimoto K, Xu J, Nonaka K, Horiuchi T, Komorita S, Hattori G et al (2021) Facial action unit-based deep learning framework for spotting macro-and micro-expressions in long video sequences. In: ACM International conference on multimedia (MM). https://doi.org/10.1145/3474085.3479209, pp 4794–4798

  55. Yuhong H (2021) Research on micro-expression spotting method based on optical flow features. In: ACM International conference on multimedia (MM). https://doi.org/10.1145/3474085.3479225, pp 4803–4807

  56. Yap CH, Yap MH, Davison AK, Cunningham R (2021) 3d-cnn for facial micro-and macro-expression spotting on long video sequences using temporal oriented reference frame. In: CoRR https://arxiv.org/abs/2105.06340

  57. Gupta AK, Gupta P, Rahtu E (2021) FATALRead-fooling visual speech recognition models. Appl Intell, pp 1–16. https://doi.org/10.1007/s10489-021-02846-w

  58. Gupta P, Rahtu E (2019) CIIDefence: Defeating adversarial attacks by fusing class-specific image inpainting and image denoising. In: Proceedings of the ieee/cvf international conference on computer vision (iccv), pp 6708–6717, https://doi.org/10.1109/ICCV.2019.00681

  59. Gupta P, Rahtu E (2019) MLAttack: Fooling semantic segmentation networks by multi-layer attacks. In: German Conference on Pattern Recognition (GCPR). https://doi.org/10.1007/978-3-030-33676-9_28, pp 401–413

Download references

Acknowledgment

The authors are thankful to all those researchers who have provided access to the publicly available datasets and codes used in this experimental analysis of our method.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Gupta.

Ethics declarations

Conflict of Interests

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 4.29 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P. PERSIST: Improving micro-expression spotting using better feature encodings and multi-scale Gaussian TCN. Appl Intell 53, 2235–2249 (2023). https://doi.org/10.1007/s10489-022-03553-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03553-w

Keywords

Navigation