Skip to main content

Advertisement

Log in

Person re-identification via semi-supervised adaptive graph embedding

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Video surveillance is an indispensable part of the smart city for public safety and security. Person Re-Identification (Re-ID), as one of elementary learning tasks for video surveillance, is to track and identify a given pedestrian in a multi-camera scene. In general, most existing methods has firstly adopted a CNN based detector to obtain the cropped pedestrian image, it then aims to learn a specific distance metric for retrieval. However, unlabeled gallery images are generally overlooked and not utilized in the training. On the other hands, Manifold Embedding (ME) has well been applied to Person Re-ID as it is good to characterize the geometry of database associated with the query data. However, ME has its limitation to be scalable to large-scale data due to the huge computational complexity for graph construction and ranking. To handle this problem, we in this paper propose a novel scalable manifold embedding approach for Person Re-ID task. The new method is to incorporate both graph weight construction and manifold regularized term in the same framework. The graph we developed is discriminative and doubly-stochastic so that the side information has been considered so that it can enhance the clustering performances. The doubly-stochastic property can also guarantee the graph is highly robust and less sensitive to the parameters. Meriting from such a graph, we then incorporate the graph construction, the subspace learning method in the unified loss term. Therefore, the subspace results can be utilized into the graph construction, and the updated graph can in turn incorporate discriminative information for graph embedding. Extensive simulations is conducted based on three benchmark Person Re-ID datasets and the results verify that the proposed method can achieve better ranking performance compared with other state-of-the-art graph-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Song W, Zheng J, Wu Y, Chen C, Liu F (2021) Discriminative feature extraction for video person re-identification via multi-task network. Appl Intell 51(2):788–803

    Article  Google Scholar 

  2. Pang Z, Guo J, Sun W, Xiao Y, Yu M (2021) Cross-domain person re-identification by hybrid supervised and unsupervised learning. Applied Intelligence, pp 1–15

  3. Su J, He X, Qing L, Cheng Y, Peng Y (2021) An enhanced siamese angular softmax network with dual joint-attention for person re-identification. Applied Intelligence, pp 1–19

  4. Luo H, Jiang W, Gu Y, Liu F, Liao X, Lai S, Gu J (2019) A strong baseline and batch normalization neck for deep person re-identification. IEEE Trans Multimed 22(10):2597–2609

    Article  Google Scholar 

  5. Cheng Z, Dong Q, Gong S, Zhu X (2020) Inter-task association critic for cross-resolution person re-identification. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2605–2615

  6. He L, Liao X, Liu W, Liu X, Cheng P, Mei T (2020) Fastreid: A pytorch toolbox for general instance re-identification. arXiv preprint arXiv:2006.02631

  7. Zhou D, Weston J, Gretton A, Bousquet O, Schölkopf B. (2003) Ranking on data manifolds. In: NIPS, vol 3

  8. Xu B, Bu J, Chen C, Wang C, Cai D, He X (2015) Emr: A scalable graph-based ranking model for content-based image retrieval. IEEE Trans Knowl Data Eng 27(1):102–114

    Article  Google Scholar 

  9. Wang F, Zhang C, Shen HC, Wang J (2006) Semi-supervised classification using linear neighborhood propagation. In: 2006 IEEE computer society conference on Computer vision and pattern recognition, vol 1, IEEE, pp 160–167

  10. Yang Y, Nie F, Xu D, Luo J, Zhuang Y, Pan Y (2012) A multimedia retrieval framework based on semi-supervised ranking and relevance feedback. IEEE Trans Pattern Anal Mach Intell 34(4):723–742

    Article  Google Scholar 

  11. Zhao M, Zhang Z, Chow TW (2012) Trace ratio criterion based generalized discriminative learning for semi-supervised dimensionality reduction. Pattern Recogn 45(4):1482–1499

    Article  MATH  Google Scholar 

  12. Zhao M, Chow TW, Wu Z, Zhang Z, Li B (2015) Learning from normalized local and global discriminative information for semi-supervised regression and dimensionality reduction. Inf Sci 324:286–309

    Article  MATH  Google Scholar 

  13. Zhao M, Zhang Z, Chow TW, Li B (2014) A general soft label based linear discriminant analysis for semi-supervised dimensionality reduction. Neural Netw 55:83–97

    Article  MATH  Google Scholar 

  14. Zhang Z, Li F, Zhao M, Zhang L, Yan S (2017) Robust neighborhood preserving projection by nuclear/l2, 1-norm regularization for image feature extraction. IEEE Trans Image Process 26(4):1607–1622

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao Y, Ma J, Zhao M, Liu W, Yuille AL (2019) Nddr-cnn: Layerwise feature fusing in multi-task cnns by neural discriminative dimensionality reduction. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 3205–3214

  16. Zhang H, Zhang Z, Zhao M, Ye Q, Zhang M, Wang M (2020) Robust triple-matrix-recovery-based auto-weighted label propagation for classification. IEEE Trans Neural Netw Learn Syst 31(11):4538–4552

    Article  MathSciNet  Google Scholar 

  17. Zhang Z, Jia L, Zhao M, Liu G, Wang M, Yan S (2018) Kernel-induced label propagation by mapping for semi-supervised classification. IEEE Trans Big Data 5(2):148–165

    Article  Google Scholar 

  18. Zhao M, Lin M, Chiu B, Zhang Z, Tang XS (2018) Trace ratio criterion based discriminative feature selection via l2, p-norm regularization for supervised learning. Neurocomputing 321: 1–16

    Article  Google Scholar 

  19. Zhang Z, Li F, Zhao M, Zhang L, Yan S (2016) Joint low-rank and sparse principal feature coding for enhanced robust representation and visual classification. IEEE Trans Image Process 25(6):2429–2443

    Article  MathSciNet  MATH  Google Scholar 

  20. Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  21. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  22. Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Process Syst 14(6):585–591

    Google Scholar 

  23. Yu W, Teng X, Liu C (2006) Face recognition using discriminant locality preserving projections. Image Vis Comput 24(3):239–248

    Article  Google Scholar 

  24. Deng C, He X, Han J (2007) Spectral regression: a unified subspace learning framework for content-based image retrieval. In: Proceedings of the 15th international conference on multimedia 2007, Augsburg, Germany, September 24-29, 2007

  25. Cai D (2015) Compressed spectral regression for efficient nonlinear dimensionality reduction. In: Twenty-fourth international joint conference on artificial intelligence

  26. Nie F, Zhu W, Li X (2017) Unsupervised large graph embedding. In: Thirty-first AAAI conference on artificial intelligence

  27. Chen X, Cai D (2011) Large scale spectral clustering with landmark-based representation. In: Twenty-fifth AAAI conference on artificial intelligence

  28. Li Y, Nie F, Huang H, Huang J (2015) Large-scale multi-view spectral clustering via bipartite graph. In: Twenty-ninth AAAI conference on artificial intelligence

  29. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. arXiv preprint arXiv:1606.09375

  30. Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907

  31. Hamilton WL, Ying R, Leskovec J (2017) Inductive representation learning on large graphs. arXiv preprint arXiv:1706.02216

  32. Veličković P, Cucurull G, Casanova A, Romero A, Lio P (2017) Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903

  33. Lu S, Zhu Z, Gorriz JM, Wang SH, Zhang YD (2022) Nagnn: Classification of covid-19 based on neighboring aware representation from deep graph neural network. Int J Intell Syst 37(2):1572–1598

    Article  Google Scholar 

  34. Wang SH, Govindaraj V, Gorriz JM, Zhang X, Zhang YD (2021) Explainable diagnosis of secondary pulmonary tuberculosis by graph rank-based average pooling neural network. Journal of Ambient Intelligence and Humanized Computing, pp 1–14

  35. Zhao M, Zhang Y, Zhang Z, Liu J, Kong W (2019) Alg: Adaptive low-rank graph regularization for scalable semi-supervised and unsupervised learning. Neurocomputing 370:16–27

    Article  Google Scholar 

  36. Liu W, Chang SF (2009) Robust multi-class transductive learning with graphs. In: 2009 IEEE Conference on computer vision and pattern recognition, IEEE, pp 381–388

  37. Liu W, He J, Chang SF (2010) Large graph construction for scalable semi-supervised learning. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 679–686

  38. Cai D, Chen X (2014) Large scale spectral clustering via landmark-based sparse representation. IEEE Trans Cybern 45(8):1669–1680

    Google Scholar 

  39. Zhou D, Bousquet O, Lal TN, Weston J, Schölkopf B (2004) Learning with local and global consistency. In: Advances in neural information processing systems, pp 321–328

  40. Von Neumann J (1950) Functional operators: Measures and integrals, vol 1, Princeton University Press

  41. Horn RA, Johnson CR (2012) Matrix analysis. Cambridge University Press

  42. Nie F, Zhu W, Li X (2020) Unsupervised large graph embedding based on balanced and hierarchical k-means IEEE Transactions on Knowledge and Data Engineering

  43. Nene SA, Nayar SK, Murase H (1996) Columbia object image library (coil-100). Tech. Rep. Technical Report CUCS-005-96 Columbia University

  44. Liu CL, Yin F, Wang DH, Wang QF (2011) Casia online and offline chinese handwriting databases. In: 2011 International conference on document analysis and recognition, IEEE, pp 37–41

  45. Lee K, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):947–963

    Google Scholar 

  46. Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms

  47. Fan J, Tian Z, Zhao M, Chow TW (2018) Accelerated low-rank representation for subspace clustering and semi-supervised classification on large-scale data. Neural Netw 100:39–48

    Article  MATH  Google Scholar 

  48. Zhao M, Chow TW, Zhang Z, Li B (2015) Automatic image annotation via compact graph based semi-supervised learning. Knowl-Based Syst 76:148–165

    Article  Google Scholar 

  49. Zhao M, Liu J, Zhang Z, Fan J (2021) A scalable sub-graph regularization for efficient content based image retrieval with long-term relevance feedback enhancement. Knowledge-Based Systems 212:106505

    Article  Google Scholar 

  50. Ma L, Liu H, Hu L, Wang C, Sun Q (2016) Orientation driven bag of appearances for person re-identification. arXiv preprint arXiv:1605.02464

  51. Martinel N, Micheloni C (2012) Re-identify people in wide area camera network. In: 2012 IEEE Computer society conference on computer vision and pattern recognition workshops. IEEE, Providence, RI, pp 31–36, DOI https://doi.org/10.1109/CVPRW.2012.6239203https://doi.org/10.1109/CVPRW.2012.6239203, (to appear in print)

  52. Das A, Chakraborty A, Roy-Chowdhury AK (2014) Consistent re-identification in a camera network. In: European conference on computer vision, lecture notes in computer science, vol 8690, Springer, pp 330–345

Download references

Acknowledgements

This work is partially supported by National Natural Science Foundation of China (61971121, 72004174), partially supported by the Science and Technology Research Project of Chongqing Education Commission under Grant KJQN202000612.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingbo Zhao or Choujun Zhan.

Ethics declarations

Conflict of Interests

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jiao Liu and Mingquan Lin contribute equally to this work.

Appendix

Appendix

We in this A derive (16) from (15). We first rewrite (16) as follows:

$$ \left\{\begin{aligned} n =& 1{W_{t}^{0}}{1^{T}} + \left| T \right|t + n\mu {1^{T}} + n{\text{1}}{\mu^{T}}\\ \left| T \right| =& 1{W_{t}^{0}}T{1^{T}} + 1{T^{2}}{1^{T}}t + 1{\mu^{T}}\left| T \right| + n\mu T{1^{T}}\\ {1^{T}} =& {W_{t}^{0}}{1^{T}} + t T{1^{T}} + n{\mu^{T}} + {1^{T}}\mu {1^{T}} \end{aligned} \right. $$
(18)

Noted that in (14), \(t = {{\left ({ - Tr\left ({{W_{t}^{0}}T} \right ) - 2\mu T{1^{T}}} \right )} \mathord {\left / {\vphantom {{\left ({ - Tr\left ({{W_{t}^{0}}T} \right ) - 2\mu T{1^{T}}} \right )} {\left | T \right |}}} \right . \kern -\nulldelimiterspace } {\left | T \right |}}\). By replacing it in (15), we have

$$ \left\{\begin{aligned} n =& 1{W_{t}^{0}}{1^{T}} - Tr\left( {{W_{t}^{0}}T} \right) - 2\mu T{1^{T}} + 2n\mu {1^{T}}\\ \left| T \right| =& 1{W_{t}^{0}}T{1^{T}} - \frac{{Tr\left( {{W_{t}^{0}}T} \right)\left( {1{T^{2}}{1^{T}}} \right)}}{{\left| T \right|}} \\ &- \frac{{2\mu T{1^{T}}\left( {1{T^{2}}{1^{T}}} \right)}}{{\left| T \right|}}+ 1{\mu^{T}}\left| T \right| + n\mu T{1^{T}}\\ {1^{T}} =& {W_{t}^{0}}{1^{T}} - \frac{{Tr\left( {{W_{t}^{0}}T} \right)T{1^{T}}}}{{\left| T \right|}} - \frac{{2T{1^{T}}\mu T{1^{T}}}}{{\left| T \right|}}\\ &+ n{\mu^{T}} + {1^{T}}\mu {1^{T}} \end{aligned} \right. $$
(19)

Then, we some math derivation, we have:

$$ \left\{ {\begin{aligned} \mu {1^{T}} =& \frac{{n - 1{W_{t}^{0}}{1^{T}} + Tr\left( {{W_{t}^{0}}T} \right) }}{{2n}} + \frac{{\mu T{1^{T}}}}{n}\\ \mu T{1^{T}} =& \frac{{n\left| T \right| - 2n\left( {1{W_{t}^{0}}T{1^{T}}} \right) + \left| T \right|\left( {1{W_{t}^{0}}{1^{T}}} \right) }}{{2{n^{2}} + 2\left| T \right| - {{4n1{T^{2}}{1^{T}}} \mathord{\left/ {\vphantom {{4n1{T^{2}}{1^{T}}} {\left| T \right|}}} \right. \kern-\nulldelimiterspace} {\left| T \right|}}}}\\ &+ \frac{{ \left( {\frac{{2n1{T^{2}}{1^{T}}}}{{\left| T \right|}} - \left| T \right|} \right)Tr\left( {{W_{t}^{0}}T} \right)}}{{2{n^{2}} + 2\left| T \right| - {{4n1{T^{2}}{1^{T}}} \mathord{\left/ {\vphantom {{4n1{T^{2}}{1^{T}}} {\left| T \right|}}} \right. \kern-\nulldelimiterspace} {\left| T \right|}}}}\\ {\mu^{T}} =& \frac{I}{n}\left( {{1^{T}} - {W_{t}^{0}}{{\text{1}}^{T}}{\text{ + }}\frac{{Tr\left( {{W_{t}^{0}}T} \right)}}{{\left| T \right|}}T{1^{T}}} \right) \\ & + \frac{{2T{1^{T}}\mu T{1^{T}}}}{{\left| T \right|n}} - \frac{{{1^{T}}\mu {1^{T}}}}{n} \end{aligned}} \right. $$
(20)

By multiply 1T into both sides of the first and second equations, and replacing the derivation results 1Tμ1T and 1TμT1T into the third equation, we have:

$$ \left\{ {\begin{aligned} {1^{T}}\mu {1^{T}} =& \frac{{{1^{T}}1}}{{2n}}\left( {{1^{T}} - {W_{t}^{0}}{{\text{1}}^{T}}{\text{ + }}\frac{{Tr\left( {{W_{t}^{0}}T} \right)}}{{\left| T \right|}}T{1^{T}}} \right) \\ &+ \frac{{{1^{T}}\mu T{1^{T}}}}{n}\\ {1^{T}}\mu T{1^{T}} =& \frac{{{1^{T}}1\left( {2nT - \left| T \right|I} \right)}}{{2{n^{2}} + 2\left| T \right| - {{4n1{T^{2}}{1^{T}}} \mathord{\left/ {\vphantom {{4n1{T^{2}}{1^{T}}} {\left| T \right|}}} \right. \kern-\nulldelimiterspace} {\left| T \right|}}}}\\ &\left( {1 - 1{W_{t}^{0}}{\text{ + 1}}T\frac{{Tr\left( {{W_{t}^{0}}T} \right)}}{{\left| T \right|}}} \right)\\ \mu =&\left( {1 - 1{W_{t}^{0}}{\text{ + }}1T\frac{{Tr\left( {{W_{t}^{0}}T} \right)}}{{\left| T \right|}}} \right) \left( {\frac{I}{n} - \frac{{{1^{T}}1}}{{2{n^{2}}}}} \right)\\ &+ 1T\mu 1\frac{{\text{2}}}{{n\left| T \right|}}\left( {T - \frac{{\left| T \right|}}{{2n}}I} \right) \end{aligned}} \right. $$
(21)

Finally, we prove:

$$ \begin{aligned} \mu =& \left( {1 - {\text{1}}{W_{t}^{0}}{\text{ + 1}}T\frac{{Tr\left( {{W_{t}^{0}}T} \right)}}{{\left| T \right|}}} \right)\\ &\left( {\frac{I}{n} - \frac{{{1^{T}}1}}{{2{n^{2}}}} - \frac{{\left( {T - \frac{{\left| T \right|}}{{2n}}I} \right){1^{T}}1\left( {T - \frac{{\left| T \right|}}{{2n}}I} \right)}}{{{{n1{T^{2}}{1^{T}} - {n^{2}}\left| T \right|} \mathord{\left/ {\vphantom {{n1{T^{2}}{1^{T}} - {n^{2}}\left| T \right|} 2}} \right. \kern-\nulldelimiterspace} 2} - {{{{\left| T \right|}^{2}}} \mathord{\left/ {\vphantom {{{{\left| T \right|}^{2}}} 2}} \right. \kern-\nulldelimiterspace} 2}}}} \right) \end{aligned} $$
(22)

where the final equations hold as in (23) and (24):

$$ \begin{aligned} &{1^{T}}\mu {1^{T}}\\ &= {1^{T}}\frac{{n - 1{W_{t}^{0}}{1^{T}} + Tr\left( {{W_{t}^{0}}} \right) }}{{2n}} + \frac{{{1^{T}}\mu T{1^{T}}}}{n}\\ &= \frac{{{1^{T}}{{11}^{T}}}}{{2n}} - \frac{{{1^{T}}1}}{{2n}}{W_{t}^{0}}{1^{T}} + \frac{{{1^{T}}1T{1^{T}}}}{{2n\left| T \right|}}Tr\left( {{W_{t}^{0}}} \right) + \frac{{{1^{T}}\mu T{1^{T}}}}{n}\\ &= \frac{{{1^{T}}1}}{{2n}}\left( {{1^{T}} - {W_{t}^{0}}{1^{T}} + \frac{{Tr\left( {{W_{t}^{0}}} \right)T{1^{T}}}}{{\left| T \right|}}} \right) + \frac{{{1^{T}}\mu T{1^{T}}}}{n} \end{aligned} $$
(23)
$$ \begin{aligned} &{1^{T}}\mu T{1^{T}}\\ &= \frac{{{1^{T}}\left( {2n\left| T \right| - 2n\left( {1{W_{t}^{0}}T{1^{T}}} \right) + \frac{{2n1{T^{2}}{1^{T}}}}{{\left| T \right|}}Tr\left( {{W_{t}^{0}}T} \right)} \right)}}{{2{n^{2}} + 2\left| T \right| - {{4n1{T^{2}}{1^{T}}} \mathord{\left/ {\vphantom {{4n1{T^{2}}{1^{T}}} {\left| T \right|}}} \right. \kern-\nulldelimiterspace} {\left| T \right|}}}}\\ &\qquad{\text{ - }} \frac{{{1^{T}}\left( {n\left| T \right| - \left| T \right|\left( {1{W_{t}^{0}}{1^{T}}} \right) + \left| T \right|Tr\left( {{W_{t}^{0}}T} \right)} \right)}}{{2{n^{2}} + 2\left| T \right| - {{4n1{T^{2}}{1^{T}}} \mathord{\left/ {\vphantom {{4n1{T^{2}}{1^{T}}} {\left| T \right|}}} \right. \kern-\nulldelimiterspace} {\left| T \right|}}}}\\ &= \frac{{2n\left( {{1^{T}}1T{1^{T}} - {1^{T}}1T{W_{t}^{0}}{1^{T}} + {1^{T}}1T\frac{{Tr\left( {{W_{t}^{0}}T} \right)T{1^{T}}}}{{\left| T \right|}}} \right)}}{{2{n^{2}} + 2\left| T \right| - {{4n1{T^{2}}{1^{T}}} \mathord{\left/ {\vphantom {{4n1{T^{2}}{1^{T}}} {\left| T \right|}}} \right. \kern-\nulldelimiterspace} {\left| T \right|}}}}\\ &\qquad{\text{ - }}\frac{{\left| T \right|\left( {{1^{T}}{{11}^{T}} - {1^{T}}1{W_{t}^{0}}{1^{T}} + {1^{T}}1\frac{{Tr\left( {{W_{t}^{0}}T} \right)T{1^{T}}}}{{\left| T \right|}}} \right)}}{{2{n^{2}} + 2\left| T \right| - {{4n1{T^{2}}{1^{T}}} \mathord{\left/ {\vphantom {{4n1{T^{2}}{1^{T}}} {\left| T \right|}}} \right. \kern-\nulldelimiterspace} {\left| T \right|}}}} \end{aligned} $$
$$ \begin{aligned} &=\frac{{2n{1^{T}}1T\left( {{1^{T}} - {W_{t}^{0}}{{\text{1}}^{T}}{\text{ + }}\frac{{Tr\left( {{W_{t}^{0}}T} \right)}}{{\left| T \right|}}T{1^{T}}} \right)}}{{2{n^{2}} + 2\left| T \right| - {{4n1{T^{2}}{1^{T}}} \mathord{\left/ {\vphantom {{4n1{T^{2}}{1^{T}}} {\left| T \right|}}} \right. \kern-\nulldelimiterspace} {\left| T \right|}}}}\\ &\qquad{\text{ - }}\frac{{{1^{T}}1\left| T \right|\left( {{1^{T}} - {W_{t}^{0}}{{\text{1}}^{T}}{\text{ + }}\frac{{Tr\left( {{W_{t}^{0}}T} \right)}}{{\left| T \right|}}T{1^{T}}} \right)}}{{2{n^{2}} + 2\left| T \right| - {{4n1{T^{2}}{1^{T}}} \mathord{\left/ {\vphantom {{4n1{T^{2}}{1^{T}}} {\left| T \right|}}} \right. \kern-\nulldelimiterspace} {\left| T \right|}}}}\\ &= \frac{{2n{1^{T}}1\left( {T - \frac{{\left| T \right|}}{{2n}}I} \right)\left( {{1^{T}} - {W_{t}^{0}}{{\text{1}}^{T}}{\text{ + }}\frac{{Tr\left( {{W_{t}^{0}}T} \right)}}{{\left| T \right|}}T{1^{T}}} \right)}}{{2{n^{2}} + 2\left| T \right| - {{4n1{T^{2}}{1^{T}}} \mathord{\left/ {\vphantom {{4n1{T^{2}}{1^{T}}} {\left| T \right|}}} \right. \kern-\nulldelimiterspace} {\left| T \right|}}}} \end{aligned} $$
(24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Lin, M., Zhao, M. et al. Person re-identification via semi-supervised adaptive graph embedding. Appl Intell 53, 2656–2672 (2023). https://doi.org/10.1007/s10489-022-03570-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03570-9

Keywords