Abstract
Mining patterns that satisfy both frequency and utility constraints is an interesting problem in data mining. Currently, there are two main approaches to solving this problem: the first considers these two factors separately (skyline frequent-utility patterns), and the second combines these two factors to form a composite measure (frequent weighted utility patterns). In the second approach, the weighted utility support (wus), which represents the percentage occupancy of the total weighted utility of all transactions in a quantitative database, is used. This approach has the advantage of satisfying the downward-closure property, so it is easy to implement divide-and-conquer and pruning strategies on the candidate search space, as shown by algorithms such as MWIT-FWUI, MBiS-FWUI, and WUN-Miner. This study proposes an SWUN-list structure, a shortened version of the N-list structure, to effectively represent and mine frequent weighted utility patterns (FWUPs) in quantitative databases based on the second approach. Several theorems are also developed to quickly compute the wus values of patterns based on their SWUN-lists, as well as to determine the wus values of some special patterns without computation. The experiments are conducted on a variety of datasets to compare the proposed algorithm with the state-of-the-art methods. Experimental results confirm that the proposed method is superior to the existing methods for mining FWUPs in quantitative databases.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig11_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig12_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig13_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig14_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig15_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig16_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig17_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig18_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig19_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig20_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig21_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig22_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig23_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig24_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-022-03580-7/MediaObjects/10489_2022_3580_Fig25_HTML.png)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Tuong L, Vo B (2016) The lattice-based approaches for mining association rules: a review. Wiley Interdiscip Rev Data Min Knowl Discov 6(4):140–151
Vo B, Le T, Hong T-P, Le B (2014) An effective approach for maintenance of pre-large-based frequent-itemset lattice in incremental mining. Appl Intell 41(3):759–775
Zhang S, Zhang Y, Yin L, Yuan T, Wu Z, Luo H (2019) Mining frequent items over the distributed hierarchical continuous weighted data streams in Internet of Things. IEEE Access 7:74890–74898
Agrawal Rakesh T, Imieliński, Swami A (1993) Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD international conference on Management of data, pp 207–216
Jiawei H, PeiJ Yin Y, Mao R (2004) Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Min Knowl Discov 8(1):53–87
Zaki MJ (2000) Scalable algorithms for association mining. IEEE Trans Knowl Data Eng 12(3):372–390
Deng Z-H, Wang ZH, Jiang JJ (2012) A new algorithm for fast mining frequent itemsets using N-lists. Sci China Inform Sci 55(9):2008–2030
Deng Z-H, Lv S-L (2015) PrePost+: An efficient N-lists-based algorithm for mining frequent itemsets via Children–Parent Equivalence pruning. Expert Syst Appl 42(13):5424–5432
Deng Z-H (2016) DiffNodesets: An efficient structure for fast mining frequent itemsets. Appl Soft Comput 41:214–223
Vo B, Le T, Coenen F, Tzung-Pei H (2016) Mining frequent itemsets using the N-list and subsume concepts. Int J Mach Learn Cybernet 7(2):253–265
Huong B, Vo B, Nguyen-Hoang T-A, Yun U (2021) Mining frequent weighted closed itemsets using the WN-list structure and an early pruning strategy. Appl Intell 51(3):1439–1459
Huong B, Nguyen-Hoang T-A, Vo B, Nguyen H, Le T (2021) A sliding window-based approach for mining frequent weighted patterns over data streams. IEEE Access 9:56318–56329
Vo B, Bui H, Vo T, Le T (2020) Mining top-rank-k frequent weighted itemsets using WN-list structures and an early pruning strategy. Knowl Based Syst 201:106064
Yoonji B, Yun U, Lin JCW, Yoon E, Fujita H (2020) Efficiently mining erasable stream patterns for intelligent systems over uncertain data. Int J Intell Syst 35(11):1699–1734
Tuong L, Vo B, Fournier-Viger P, Lee MY, Sung Wook Baik (2019) SPPC: a new tree structure for mining erasable patterns in data streams. Appl Intell 49(2):478–495
Vo B, Le T, Tzung-Pei H (2017) Efficient algorithms for mining erasable closed patterns from product datasets. IEEE Access 5:3111–3120
Liu M, Qu J (2012) Mining high utility itemsets without candidate generation. In Proceedings of the 21st ACM international conference on Information and knowledge management, pp 55–64
Liu Y, Liao W-k, Choudhary A (2005) A two-phase algorithm for fast discovery of high utility itemsets. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, Berlin, pp 689–695
Bui Huong B, Vo, Nguyen H (2016) WUN-miner: A new method for mining frequent weighted utility itemsets. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, pp 001365–001370
Duy HN, Bay VD, Tzung-Pei H (2015) MBiS: an efficient method for mining frequent weighted utility itemsets from quantitative databases. J Comput Sci Cybern 31(1):17–30
Unil Y, Ryang H, Ryu KH (2014) High utility itemset mining with techniques for reducing overestimated utilities and pruning candidates. Expert Syst Appl 41(8):3861–3878
Heungmo R, Yun U (2017) Indexed list-based high utility pattern mining with utility upper-bound reduction and pattern combination techniques. Knowl Inf Syst 51(2):627–659
Duong Q-H, Fournier-Viger P, Ramampiaro H, Nørvåg K, Dam T-L (2018) Efficient high utility itemset mining using buffered utility-lists. Appl Intell 48(7):1859–1877
Qu J-F, Liu M, Fournier-Viger P (2019) Efficient algorithms for high utility itemset mining without candidate generation. High-Utility Pattern Mining. Springer, Cham, pp 131–160
Vikram G, Sureka A, Patel D (2015) Efficient skyline itemsets mining. In: Proceedings of the Eighth International C* Conference on Computer Science & Software Engineering, pp 119–124
Jeng-Shyang P, Lin JC-H, Yang L, Fournier-Viger P, Hong T-P (2017) Efficiently mining of skyline frequent-utility patterns. Intell Data Anal 21(6):1407–1423
Chun-Wei LJ, Yang Lu, Tzung-Pei H (2019) Mining of skyline patterns by considering both frequent and utility constraints. Eng Appl Artif Intell 77:229–238
Vo B, Le B, Jung JJ (2012) A tree-based approach for mining frequent weighted utility itemsets. In: International Conference on Computational Collective Intelligence. Springer, Berlin, pp. 114–123
Deng Z-H, Sheng-Long Lv (2014) Fast mining frequent itemsets using Nodesets. Expert Syst Appl 41(10):4505–4512
Fournier-Viger P, Chun-Wei Lin J, Truong-Chi T, Nkambou R (2019) A survey of high utility itemset mining. High-utility pattern mining. Springer, Cham, pp 1–45
Heonho K, Yun U, Baek Y, Kim J, Vo B, Yoon E, Fujita H (2021) Efficient list based mining of high average utility patterns with maximum average pruning strategies. Inform Sci 543:85–105
Yoonji B, Yun U, Kim H, Kim J, Vo B, Truong T, Deng Z-H (2021) Approximate high utility itemset mining in noisy environments. Knowl-Based Syst 212:106596
Jongseong K, Yun U, Kim H, Ryu T, Chun-Wei Lin J, Fournier‐Vier P, Pedrycz W (2021) Average utility driven data analytics on damped windows for intelligent systems with data streams. Int J Intell Syst 36(10):5741–5769
Judae L, Yun U, Lee G, Yoon E (2018) Efficient incremental high utility pattern mining based on pre-large concept. Eng Appl Artif Intell 72:111–123
Hyoju N, Yun U, Vo B, Truong T, Deng Z-H, Yoon E (2020) Efficient approach for damped window-based high utility pattern mining with list structure. IEEE Access 8:50958–50968
Unil Y, Nam H, Kim J, Kim H, Baek Y, Lee J, Yoon E, Truong T, Vo B, Pedrycz W (2020) Efficient transaction deleting approach of pre-large based high utility pattern mining in dynamic databases. Future Gener Comput Syst 103:58–78
Vid P, Lavrac N, Kononenko I (2007) A fast algorithm for mining utility-frequent itemsets. Constraint-Based Mining and Learning :9
Yeh J-S, Li Y-C, Chang C-C (2007) Two-phase algorithms for a novel utility-frequent mining model. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, Berlin, pp 433–444
Sulaiman KM, Muyeba M, Coenen F (2008) A weighted utility framework for mining association rules. In: 2008 Second UKSIM European Symposium on Computer Modeling and Simulation. IEEE, pp 87–92
Tram T, Vo B, Le TTN, Nguyen NT (2017) Text clustering using frequent weighted utility itemsets. Cybernet Syst 48(3):193–209
Zhang L, Fu G, Cheng F, Qiu J, Su Y (2018) A multi-objective evolutionary approach for mining frequent and high utility itemsets. Appl Soft Comput 62:974–986
Nguyen H, Le T, Nguyen M, Fournier-Viger P, Tseng VS, Vo B (2022) Mining frequent weighted utility itemsets in hierarchical quantitative databases. Knowl Based Syst 237:107709
Frequent itemset mining dataset repository. Available: http://fimi.ua.ac.be/data/. Accessed 25 Aug 2021
An open-source data mining library. Available: http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php. Accessed 25 Aug 2021
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Nguyen, H., Le, N., Bui, H. et al. A new approach for efficiently mining frequent weighted utility patterns. Appl Intell 53, 121–140 (2023). https://doi.org/10.1007/s10489-022-03580-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10489-022-03580-7