Skip to main content
Log in

An effective parallel evolutionary metaheuristic with its application to three optimization problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper presents a parallel evolutionary metaheuristic which includes different threads aimed at balancing exploration versus exploitation. Exploring different areas of the search space independently, each thread also communicates with other threads, and exploits the search space by improving a common high quality solution. The presented metaheuristic has been applied to three famous and hard-to-solve optimization problems, namely the job shop scheduling, the permutation flowshop scheduling, and the quadratic assignment problems. The results of computational experiments indicate that it is effective, versatile and robust, competing with the-state-of-art procedures presented for these three problems. In effect, in terms of solution quality, and average required running time to reach a high quality solution, the procedure outperforms several state-of-the-art procedures on multiple benchmark instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams J, Balas E, Zawack D (1988) The shifting bottleneck procedure for job shop scheduling. Manag Sci 391–401

  2. Ahuja R, Orlin J, Tiwari A (2000) A greedy genetic algorithm for the quadratic assignment problem. Comput Oper Res 27(10):917–934

    Article  MathSciNet  MATH  Google Scholar 

  3. Aiex RM, Binato S, Resende MGC (2003) Parallel grasp with path-relinking for job shop scheduling. Parallel Comput 29(4):393–430. https://doi.org/10.1016/S0167-8191(03)00014-0. http://www.sciencedirect.com/science/article/pii/S0167819103000140

    Article  MathSciNet  Google Scholar 

  4. Alba E (2005) Parallel metaheuristics: a new class of algorithms, vol 47. Wiley, Hoboken

    Book  MATH  Google Scholar 

  5. Aldous D, Vazirani U (1994) “Go with the winners” algorithms. In: 35th Annual symposium on foundations of computer science, 1994 proceedings. https://doi.org/10.1109/SFCS.1994.365742, pp 492–501

  6. Amirghasemi M (2021) An effective decomposition-based stochastic algorithm for solving the permutation flow-shop scheduling problem. Algorithms 14(4). https://doi.org/10.3390/a14040112. https://www.mdpi.com/1999-4893/14/4/112

  7. Amirghasemi M, Zamani R (2014) A synergetic combination of small and large neighborhood schemes in developing an effective procedure for solving the job shop scheduling problem. SpringerPlus 3(1):1–15. https://doi.org/10.1186/2193-1801-3-193

    Article  Google Scholar 

  8. Amirghasemi M, Zamani R (2015) An effective asexual genetic algorithm for solving the job shop scheduling problem. Comput Ind Eng 83:123–138. https://doi.org/10.1016/j.cie.2015.02.011. http://www.sciencedirect.com/science/article/pii/S0360835215000686

    Article  Google Scholar 

  9. Amirghasemi M, Zamani R (2017) An effective evolutionary hybrid for solving the permutation flowshop scheduling problem. Evol Comput 25(1):87–111. https://doi.org/10.1162/EVCO_a_00162

    Article  Google Scholar 

  10. Amirghasemi M, Zamani R, Voß S (2018) An effective structural iterative refinement technique for solving the quadratic assignment problem. In: Cerulli R, Raiconi A (eds) Computational logistics. Springer International Publishing, Cham, pp 446– 460

  11. Amirghasemi M, Zamani R, Voß S (2019) Developing an effective decomposition-based procedure for solving the quadratic assignment problem. In: Paternina-Arboleda C (ed) Computational logistics. Springer International Publishing, Cham, pp 297– 316

  12. Applegate D, Cook W (1991) A computational study of the job-shop scheduling problem. ORSA J Comput 3(2):149–156

    Article  MATH  Google Scholar 

  13. Babaee Tirkolaee E, Goli A, Weber G W (2020) Fuzzy mathematical programming and self-adaptive artificial fish swarm algorithm for just-in-time energy-aware flow shop scheduling problem with outsourcing option. IEEE Trans Fuzzy Syst 28(11):2772–2783. https://doi.org/10.1109/TFUZZ.2020.2998174

    Article  Google Scholar 

  14. Baluja S, Caruana R (1995) Removing the genetics from the standard genetic algorithm. In: Prieditis A, Russel S (eds) Twelfth international conference on machine learning. San Francisco, Morgan Kaufmann Publishers, pp 38–46

  15. Bertsekas D, Tsitsiklis J, Wu C (1997) Rollout algorithms for combinatorial optimization. J Heuristics 3(3):245–262

    Article  MATH  Google Scholar 

  16. Bozejko W, Wodecki M (2002) Solving the flow shop problem by parallel tabu search. In: Proceedings. International conference on parallel computing in electrical engineering. https://doi.org/10.1109/PCEE.2002.1115237, pp 189–194

  17. Bozejko W, Wodecki M (2004) Parallel genetic algorithm for the flow shop scheduling problem. In: Wyrzykowski R, Dongarra J, Paprzycki M, Waśniewski J (eds) Parallel processing and applied mathematics. Springer, Berlin, pp 566–571

  18. Burkard RE, Karisch SE, Rendl F (1997) Qaplib–a quadratic assignment problem library. J Glob Optim 10(4):391–403

    Article  MathSciNet  MATH  Google Scholar 

  19. Carlier J (1982) The one-machine sequencing problem. Eur J Oper Res 11(1):42–47

    Article  MathSciNet  MATH  Google Scholar 

  20. Cecilia JM, Garcia JM, Ujaldon M, Nisbet A, Amos M (2011) Parallelization strategies for ant colony optimisation on GPUs. In: 2011 IEEE International symposium on parallel and distributed processing workshops and phd forum. https://doi.org/10.1109/IPDPS.2011.170, pp 339–346

  21. Chapman B, Jost G, Van Der Pas R (2008) Using OpenMP: portable shared memory parallel programming, vol 10. MIT Press

  22. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

  23. Crainic T (2019) Parallel metaheuristics and cooperative search. Springer International Publishing, Cham, pp 419–451. https://doi.org/10.1007/978-3-319-91086-4_13

    Google Scholar 

  24. Crainic TG, Toulouse M (2010) Parallel meta-heuristics. Springer, pp 497–541

  25. De Jong KA (2006) Evolutionary computation: a unified approach. MIT Press. http://books.google.com.au/books?id=OIRQAAAAMAAJ

  26. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18. https://doi.org/10.1016/j.swevo.2011.02.002. https://www.sciencedirect.com/science/article/pii/S2210650211000034

    Article  Google Scholar 

  27. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66

    Article  Google Scholar 

  28. Drezner Z (2003) A new genetic algorithm for the quadratic assignment problem. Inf J Comput 15(3):320–330

    Article  MathSciNet  MATH  Google Scholar 

  29. Drezner Z, Hahn PM, Taillard ED (2005) Recent advances for the quadratic assignment problem with special emphasis on instances that are difficult for meta-heuristic methods. Ann Oper Res 139(1):65–94. https://doi.org/10.1007/s10479-005-3444-z

    Article  MathSciNet  MATH  Google Scholar 

  30. Falkenauer E, Bouffouix S (1991) A genetic algorithm for job shop. In: IEEE International conference on robotics and automation, 1991, proceedings, vol 1. https://doi.org/10.1109/ROBOT.1991.131689, pp 824–829

  31. Fisher H, Thompson GL (1963) Probabilistic learning combinations of local job-shop scheduling rules. Industrial scheduling, pp 225–251

  32. Garey M, Johnson D, Sethi R (1976) The complexity of flowshop and jobshop scheduling. Math Oper Res 117–129

  33. Glover F (1989) Tabu search–part I. ORSA J Comput 1(3):190–206

    Article  MATH  Google Scholar 

  34. Glover F (1998) A template for scatter search and path relinking. Lect Notes Comput Sci 1363:13–54

    Google Scholar 

  35. Hansen P, Mladenović N (2003) Variable neighborhood search. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. https://doi.org/10.1007/0-306-48056-5_6. Springer US, Boston, pp 145–184

  36. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Michigan

    Google Scholar 

  37. Iyer S, Saxena B (2004) Improved genetic algorithm for the permutation flowshop scheduling problem. Comput Oper Res 31(4):593–606

    Article  MathSciNet  MATH  Google Scholar 

  38. James T, Rego C, Glover F (2009a) A cooperative parallel tabu search algorithm for the quadratic assignment problem. Eur J Oper Res 195(3):810–826. https://doi.org/10.1016/j.ejor.2007.06.061. http://www.sciencedirect.com/science/article/pii/S0377221707011058

    Article  MATH  Google Scholar 

  39. James T, Rego C, Glover F (2009b) Multistart tabu search and diversification strategies for the quadratic assignment problem. IEEE Trans Syst Man Cybern Part A: Syst Hum 39(3):579–596

    Article  Google Scholar 

  40. Joshi S K, Bansal J C (2020) Parameter tuning for meta-heuristics. Knowl-Based Syst 189:105094. https://doi.org/10.1016/j.knosys.2019.105094https://doi.org/10.1016/j.knosys.2019.105094. https://www.sciencedirect.com/science/article/pii/S0950705119304708

    Article  Google Scholar 

  41. Lawrence S (1984) Resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques (supplement). Report Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh

  42. Lee Y, Orlin J (1993) Quickmatch: a very fast algorithm for the assignment problem. Report, Massachusetts Institute of Technology, Sloan School of Management (Report number: WP#3547-93)

  43. Li Y, Pardalos P, Resende M (1994) A greedy randomized adaptive search procedure for the quadratic assignment problem. Quadratic Assignment and Related Problems 16:237–261

    Article  MathSciNet  MATH  Google Scholar 

  44. Lourenco H, Martin O, Stützle T (2003) Iterated local search. Handbook of metaheuristics, pp 320–353

  45. Nagata Y, Ono I (2018) A guided local search with iterative ejections of bottleneck operations for the job shop scheduling problem. Comput Oper Res 90:60–71. https://doi.org/10.1016/j.cor.2017.09.017. https://www.sciencedirect.com/science/article/pii/S0305054817302460

    Article  MathSciNet  MATH  Google Scholar 

  46. Nawaz M, Enscore E, Ham I (1983) A heuristic algorithm for the m-machine n-job flow-shop sequencing problem. Omega 11(1):91–95

    Article  Google Scholar 

  47. Nowicki E, Smutnicki C (1996) A fast tabu search algorithm for the permutation flow-shop problem. Eur J Oper Res 91(1):160–175

    Article  MATH  Google Scholar 

  48. Nowicki E, Smutnicki C (2005) An advanced tabu search algorithm for the job shop problem. J Sched 8(2):145–159. https://doi.org/10.1007/s10951-005-6364-5

    Article  MathSciNet  MATH  Google Scholar 

  49. Osman I H, Potts C N (1989) Simulated annealing for permutation flow-shop scheduling. Omega 17 (6):551–557. https://doi.org/10.1016/0305-0483(89)90059-5. http://www.sciencedirect.com/science/article/pii/0305048389900595

    Article  Google Scholar 

  50. Pospichal P, Jaros J (2009) GPU-based acceleration of the genetic algorithm. GECCO competition

  51. Rajendran C, Ziegler H (2004) Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. Eur J Oper Res 155 (2):426–438. https://doi.org/10.1016/S0377-2217(02)00908-6. http://www.sciencedirect.com/science/article/pii/S0377221702009086

    Article  MATH  Google Scholar 

  52. Ravetti MG, Riveros C, Mendes A, Resende MGC, Pardalos PM (2012) Parallel hybrid heuristics for the permutation flow shop problem. Ann Oper Res 199(1):269–284. https://doi.org/10.1007/s10479-011-1056-3

    Article  MathSciNet  MATH  Google Scholar 

  53. Reeves C, Yamada T (1998) Genetic algorithms, path relinking, and the flowshop sequencing problem. Evol Comput 6(1):45–60

    Article  Google Scholar 

  54. Rinnoy Kan A (1976) Machine sequencing problem: classification complexity and computation. The Hague, Martinus Nijhoff

    Google Scholar 

  55. Röck H (1984) The three-machine no-wait flow shop is np-complete. J ACM (JACM) 31(2):336–345

    Article  MathSciNet  MATH  Google Scholar 

  56. Ruiz R, Stützle T (2007) A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur J Oper Res 177(3):2033–2049. https://doi.org/10.1016/j.ejor.2005.12.009. http://www.sciencedirect.com/science/article/pii/S0377221705008507

    Article  MATH  Google Scholar 

  57. Ruiz R, Maroto C, Alcaraz J (2006) Two new robust genetic algorithms for the flowshop scheduling problem. Omega 34(5):461–476. https://doi.org/10.1016/j.omega.2004.12.006. http://www.sciencedirect.com/science/article/pii/S0305048305000174

    Article  Google Scholar 

  58. Sevkli M, Aydin ME (2007) Parallel variable neighbourhood search algorithms for job shop scheduling problems. IMA J Manag Math 18(2):117–133. https://doi.org/10.1093/imaman/dpm009. http://imaman.oxfordjournals.org/content/18/2/117.abstract

    Article  MathSciNet  MATH  Google Scholar 

  59. Stöppler S, Bierwirth C (1992) The application of a parallel genetic algorithm to the n/m/p/c max flowshop problem. In: Fandel G, Gulledge T, Jones A (eds) New directions for operations research in manufacturing. Book section 10. https://doi.org/10.1007/978-3-642-77537-6_10. Springer, Berlin, pp 161–175

  60. Storer RH, Wu SD, Vaccari R (1992) New search spaces for sequencing problems with application to job shop scheduling. Manag Sci 38(10):1495–1509

    Article  MATH  Google Scholar 

  61. Stützle T (1998) Applying iterated local search to the permutation flow shop problem. Technical Report AIDA-98-04. TU Darmstadt, FG Intellektik

  62. Taillard E (1991) Robust taboo search for the quadratic assignment problem. Parallel Comput 17(4–5):443–455. https://doi.org/10.1016/S0167-8191(05)80147-4. http://www.sciencedirect.com/science/article/pii/S0167819105801474

    Article  MathSciNet  Google Scholar 

  63. Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Oper Res 64(2):278–285

    Article  MathSciNet  MATH  Google Scholar 

  64. Taillard ED (1994) Parallel taboo search techniques for the job shop scheduling problem. ORSA J Comput 6(2):108–117

    Article  MATH  Google Scholar 

  65. Talbi EG (2006) Parallel combinatorial optimization, vol 58. Wiley, Hoboken

    Book  Google Scholar 

  66. Talbi EG, Roux O, Fonlupt C, Robillard D (2001) Parallel ant colonies for the quadratic assignment problem. Futur Gener Comput Syst 17(4):441–449. https://doi.org/10.1016/S0167-739X(99)00124-7. http://www.sciencedirect.com/science/article/pii/S0167739X99001247

    Article  MATH  Google Scholar 

  67. Talukdar S, Murthy S, Akkiraju R (537) Asynchronous teams. Springer US, Boston. https://doi.org/10.1007/0-306-48056-5_19

  68. Tasgetiren MF, Liang YC, Sevkli M, Gencyilmaz G (2007) A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem. Eur J Oper Res 177(3):1930–1947. https://doi.org/10.1016/j.ejor.2005.12.024. http://www.sciencedirect.com/science/article/pii/S0377221705008453

    Article  MATH  Google Scholar 

  69. Tosun U, Dokeroglu T, Cosar A (2013) A robust island parallel genetic algorithm for the quadratic assignment problem. Int J Prod Res 51(14):4117–4133. https://doi.org/10.1080/00207543.2012.746798

    Article  Google Scholar 

  70. Vallada E, Ruiz R (2009) Cooperative metaheuristics for the permutation flowshop scheduling problem. Eur J Oper Res 193(2):365–376. https://doi.org/10.1016/j.ejor.2007.11.049. http://www.sciencedirect.com/science/article/pii/S0377221707011253

    Article  MATH  Google Scholar 

  71. Van Hentenryck P, Michel L (2009) Constraint-based local search. The MIT Press

  72. Van Laarhoven P, Aarts E, Lenstra J (1992) Job shop scheduling by simulated annealing. Oper Res 40(1):113–125

    Article  MathSciNet  MATH  Google Scholar 

  73. Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85

    Article  Google Scholar 

  74. Whitley D, Rana S, Heckendorn R B (1999) The island model genetic algorithm: on separability, population size and convergence. J Comput Inf Technol 7:33–48

    Google Scholar 

  75. Wodecki M, Bozejko W (2002) Solving the flow shop problem by parallel simulated annealing. In: Wyrzykowski R, Dongarra J, Paprzycki M, Waśniewski J (eds) Parallel processing and applied mathematics, Lecture Notes in Computer Science, vol 2328. Book section 26. https://doi.org/10.1007/3-540-48086-2_26. Springer, Berlin, pp 236–244

  76. Yamada T, Nakano R (1992) A genetic algorithm applicable to large-scale job-shop problems. Parallel Problem Solving from Nature 2:281–290

    Google Scholar 

  77. Zamani R, Amirghasemi M (2020) A self-adaptive nature-inspired procedure for solving the quadratic assignment problem. In: Khosravy M, Gupta N, Patel N, Senjyu T (eds) Frontier applications of nature inspired computation. https://doi.org/10.1007/978-981-15-2133-1_6. Springer, Singapore, pp 119–147

  78. Zhang CY, Li P, Rao Y, Guan Z (2008) A very fast TS/SA algorithm for the job shop scheduling problem. Comput Oper Res 35(1):282–294. https://doi.org/10.1016/j.cor.2006.02.024. http://www.sciencedirect.com/science/article/pii/S0305054806000670, part Special Issue: Applications of {OR} in Finance

    Article  MathSciNet  MATH  Google Scholar 

  79. Zhu W, Curry J, Marquez A (2009) SIMD Tabu search for the quadratic assignment problem with graphics hardware acceleration. Int J Prod Res 48(4):1035–1047. https://doi.org/10.1080/00207540802555744

    Article  MATH  Google Scholar 

  80. Zobolas G, Tarantilis CD, Ioannou G (2009) Minimizing makespan in permutation flow shop scheduling problems using a hybrid metaheuristic algorithm. Comput Oper Res 36(4):1249–1267

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Amirghasemi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirghasemi, M. An effective parallel evolutionary metaheuristic with its application to three optimization problems. Appl Intell 53, 5887–5909 (2023). https://doi.org/10.1007/s10489-022-03599-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03599-w

Keywords

Navigation