Skip to main content
Log in

Enhanced sooty tern optimization algorithm using multiple search guidance strategies and multiple position update modes for solving optimization problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The Sooty Tern Optimization Algorithm (STOA) is a newly proposed bio-inspired algorithm that mimics the migration and attacking behaviors of the sea bird sooty tern in nature. STOA has several excellent advantages, including fewer parameters, a simple structure, a fast convergence rate, and high exploitation. Nevertheless, it is difficult to find the global optimal solution and prone to losing population diversity when dealing with complex optimization problems due to its single search guidance strategy and position update method. An enhanced STOA (ESTOA) is proposed to address these shortcomings that incorporates multiple search guidance strategies and position update modes. In terms of search guidance, in addition to the best individual in the original STOA, the mean individual and a randomly selected individual are also designed to guide the search. Six position update modes are proposed in conjunction with the guidance strategies, including one improved scaling mode with an extended spiral radius and five other modes based on offset operations. Due to their distinct design objectives, these guidance strategies and position update modes exhibit varying levels of search intensity and optimization effect. However, they complement one another and work cooperatively to achieve a good balance of global exploration and local exploitation. Several widely used sets of benchmark functions with a wide range of dimensions and varying degrees of complexity are used to validate ESTOA’s performance. The obtained results are compared to those of other state-of-the-art optimization algorithms in terms of convergence accuracy and a variety of numerical performance evaluation parameters. A significant improvement in solution quality demonstrates that ESTOA can increase population diversity and maintain a good balance between global exploring and local exploiting abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    Article  Google Scholar 

  2. Juste KA, Kita H, Tanaka E, Hasegawa J (1999) An evolutionary programming solution to the unit commitment problem. IEEE T Power Syst 14(4):1452–1459

    Article  Google Scholar 

  3. Beyer HG, Schwefel HP (2002) Evolution strategies–a comprehensive introduction. Nat Comput 1(1):3–52

    Article  MathSciNet  MATH  Google Scholar 

  4. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  5. Price K, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global optimization

  6. Moscato P, Mendes A, Berretta R (2007) Benchmarking a memetic algorithm for ordering microarray data. Biosyst 88(1-2):56–75

    Article  Google Scholar 

  7. Premaratne U, Samarabandu J, Sidhu T (2009) A new biologically inspired optimization algorithm. In: 2009 international conference on industrial and information systems (ICIIS). IEEE, pp 279–284

  8. Yang XS (2012) Flower pollination algorithm for global optimization International conference on unconventional computing and natural computation. Springer, Berlin, Heidelberg, pp 240– 249

  9. Askarzadeh A (2014) Bird mating optimizer: an optimization algorithm inspired by bird mating strategies. Commun Nonlinear Sci 19(4):1213–1228

    Article  MathSciNet  MATH  Google Scholar 

  10. Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219(15):8121–8144

    MathSciNet  MATH  Google Scholar 

  11. Meng Z, Pan JS (2016) Monkey king evolution: a new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization. Knowl-Based Syst 97:144–157

    Article  MathSciNet  Google Scholar 

  12. Kiran MS (2015) TSA: Tree-Seed algorithm for continuous optimization. Expert Syst Appl 42 (19):6686–6698

    Article  Google Scholar 

  13. Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1(4):355–366

    Article  Google Scholar 

  14. Simon D (2008) Biogeography-based optimization. IEEE T Evolut Comput 12(6):702–713

    Article  Google Scholar 

  15. Zhao W, Wang L, Zhang Z (2020) Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Comput Appl 32(13):9383–9425

    Article  Google Scholar 

  16. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE Proceedings of ICNN’95-international conference on neural networks, vol 4, pp 1942–1948

  17. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE T Syst Man CY B 26(1):29–41

    Article  Google Scholar 

  18. Krishnanand KN, Ghose D (2009) Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell 3(2):87–124

    Article  Google Scholar 

  19. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspir Com 2(2):78–84

    Article  Google Scholar 

  20. Oftadeh R, Mahjoob MJ, Shariatpanahi M (2010) A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search. Comput Math Appl 60(7):2087–2098

    Article  MATH  Google Scholar 

  21. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci 17(12):4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  22. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Article  Google Scholar 

  23. Cuevas E, Cienfuegos M, Zaldívar D., Pérez-Cisneros M. (2013) A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst Appl 40(16):6374–6384

    Article  Google Scholar 

  24. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  25. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  26. Li MD, Zhao H, Weng XW, Han T (2016) A novel nature-inspired algorithm for optimization: Virus colony search. Adv Eng Softw 92:65–88

    Article  Google Scholar 

  27. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  28. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  29. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Article  Google Scholar 

  30. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Article  Google Scholar 

  31. Salgotra R, Singh U (2019) The naked mole-rat algorithm. Neural Comput Appl 31 (12):8837–8857

    Article  Google Scholar 

  32. Dhiman G, Kumar V (2019) Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl-Based Syst 165:169–196

    Article  Google Scholar 

  33. Tharwat A, Gabel T (2020) Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm. Neural Comput Appl 32(11):6925–6938

    Article  Google Scholar 

  34. Mohamed AAA, Hassan SA, Hemeida AM, Alkhalaf S, Mahmoud MMM, Eldin AMB (2020) Parasitism–predation algorithm (PPA): A novel approach for feature selection. Ain Shams Eng J 11 (2):293–308

    Article  Google Scholar 

  35. Zhao W, Zhang Z, Wang L (2020) Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng Appl Artif Intel 87:103300

    Article  Google Scholar 

  36. Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst Appl 152:113377

    Article  Google Scholar 

  37. Dhiman G, Kaur A (2019) STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Eng Appl Artif Intel 82:148–174

    Article  Google Scholar 

  38. Ali HH, Fathy A, Kassem AM (2020) Optimal model predictive control for LFC of multi-interconnected plants comprising renewable energy sources based on recent sooty terns approach. Sustain Energy Techn 42:100844

    Google Scholar 

  39. Mirjalili S (2016) SCA: A sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  40. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE T Evolut Comput 1(1):67–82

    Article  Google Scholar 

  41. Babaoglu I (2015) Artificial bee colony algorithm with distribution-based update rule. Appl Soft Comput 34:851–861

    Article  Google Scholar 

  42. Kiran MS (2015) TSA: Tree-Seed algorithm for continuous optimization. Expert Syst Appl 42 (19):6686–6698

    Article  Google Scholar 

  43. Chen Q, Liu B, Zhang Q, Liang J, Suganthan P, Qu B (2014) Problem definitions and evaluation criteria for CEC 2015 special session on bound constrained single-objective computationally expensive numerical optimization. Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report. Nanyang Technological University, Singapore

  44. Das S, Suganthan PN (2010) Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. Technical Report, Jadavpur University, Kolkata, India and Nanyang Technological University, Singapore, pp 341–359

    Google Scholar 

  45. Jiang J, Xu M, Meng X, Li K (2020) STSA: A sine Tree-Seed Algorithm for complex continuous optimization problems. Physica A 537:122802

    Article  Google Scholar 

  46. Iscan H, Kiran MS, Gunduz M (2019) A novel candidate solution generation strategy for fruit fly optimizer. IEEE Access 7:130903–130921

    Article  Google Scholar 

  47. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Design 43(3):303–315

    Article  Google Scholar 

  48. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: Algorithm and applications. Future Gener Comp Sy 97:849–872

    Article  Google Scholar 

  49. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl-Based Syst 191:105190

    Article  Google Scholar 

  50. Gholami J, Mardukhi F, Zawbaa HM (2021) An improved crow search algorithm for solving numerical optimization functions. Soft Comput 25(14):9441–9454

    Article  Google Scholar 

  51. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-Qaness MA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250

    Article  Google Scholar 

  52. Abualigah L, Abd Elaziz M, Sumari P, Geem ZW, Gandomi AH (2022) Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst Appl 191:116158

    Article  Google Scholar 

  53. Derrac J, García S., Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  54. García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inform Sciences 180(10):2044–2064

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Guangdong Basic and Applied Basic Research Foundation (2020A1515010727, 2021A1515012252), the National Natural Science Foundation of China (61672174, 61772145), the Guangdong Province ordinary universities characteristic innovation project (2019KTSCX108), the Key Realm R&D Program of Guangdong Province (2021B0707010003), the Key Field Special Project of Department of Education of Guangdong (2020ZDZX3053), and the Maoming Science and Technology Project (210429094551175,mmkj2020008,mmkj2020033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix.: Basic, CEC2015 computationally expensive, and CEC2011 real-world benchmark test functions

Appendix.: Basic, CEC2015 computationally expensive, and CEC2011 real-world benchmark test functions

1.1 A.1. Basic benchmark test functions

  1. (1)

    Sphere

    \({f_{1}}(\mathbf {X}) = \sum \limits _{i = 1}^{D} {{x_{i}^{2}}} \), xi ∈ [− 100, 100]D, Unimodal and Separable (US)

  2. (2)

    Elliptic

    \({f_{2}}(\mathbf {X}) = \sum \limits _{i = 1}^{D} {{({10}^{6})^{(i - 1)/D - 1}}{x_{i}^{2}}} \), xi ∈ [− 100, 100]D, Unimodal and Non-separable (UN)

  3. (3)

    SumSquares

    \({f_{3}}(\mathbf {X}) = \sum \limits _{i = 1}^{D} {i{x_{i}^{2}}} \), xi ∈ [− 10, 10]D, Unimodal and Separable (US)

  4. (4)

    SumPower

    \({f_{4}}(\mathbf {X}) = \sum \limits _{i = 1}^{D} {{\left | {x_{i}} \right |}^{(i + 1)}} \), xi ∈ [− 10, 10]D, Multimodal and Separable (MS)

  5. (5)

    Schwefel2.22

    \({f_{5}}(\mathbf {X}) = \sum \limits _{i = 1}^{D} {\left | {x_{i}} \right |{ + }\prod \limits _{i = 1}^{D} {\left | {x_{i}} \right |}} \), xi ∈ [− 10, 10]D, Unimodal and Non-separable (UN)

  6. (6)

    Schwefel2.21

    \({f_{6}}(\mathbf {X}) = {\max \limits _{i}}\left \{\left | {x_{i}} \right |,1 \le i \le D\right \} \), xi ∈ [− 100, 100]D, Unimodal and Non-separable (UN)

  7. (7)

    Step

    \({f_{7}}(\mathbf {X}) = \sum \limits _{i = 1}^{D} {{\left (\left \lfloor {{x_{i}} + 0.5} \right \rfloor \right )}^{2}} \), xi ∈ [− 100, 100]D, Unimodal and Separable (US)

  8. (8)

    Quartic

    \({f_{8}}(\mathbf {X}) = \sum \limits _{i = 1}^{D} {i{x^{4}}} \), xi ∈ [− 1.28, 1.28]D, Unimodal and Separable (US)

  9. (9)

    QuarticWN

    \({f_{9}}(\mathbf {X}) = \sum \limits _{i = 1}^{D} {i{x_{i}^{4}} + random[0,1)} \), xi ∈ [− 1.28, 1.28]D, Unimodal and Separable (US)

  10. (10)

    Rosenbrock

    \({f_{10}}(\mathbf {X}) = \sum \limits _{i = 1}^{D{ - }1} {\left [100{{\left ({x_{i + 1}} - {x_{i}^{2}}\right )}^{2}} + {{({x_{i}} - 1)}^{2}}\right ]} \), xi ∈ [− 10, 10]D, Unimodal and Non-separable (UN)

  11. (11)

    Rastrigin

    \({f_{11}}(\mathbf {X}) = \sum \limits _{i = 1}^{D} {\left [{x_{i}^{2}} - 10{\cos \limits } (2\pi {x_{i}}) + 10\right ]} \), xi ∈ [− 5.12, 5.12]D, Multimodal and Separable (MS)

  12. (12)

    Non-Continuous Rastrigin

    \({f_{12}}(\mathbf {X}) = \sum \limits _{i = 1}^{D} {\left [{y_{i}^{2}} - 10{\cos \limits } (2\pi {y_{i}}) + 10\right ]}\)

    \({y_{i}} = \left \{ \begin {array}{l} {x_{i}} \qquad \qquad \left | {{x_{i}}} \right | < \frac {1}{2} \\ \frac {round(2{x_{i}})}{2}\quad \left | {{x_{i}}} \right | \ge \frac {1}{2} \end {array} \right .\), xi ∈ [− 5.12, 5.12]D, Multimodal and Separable (MS)

  13. (13)

    Griewank

    \({f_{13}}(\mathbf {X}) = \frac {1}{4000}\sum \limits _{i = 1}^{D} {{x_{i}^{2}} - \prod \limits _{i = 1}^{D} {{\cos \limits } \left (\frac {x_{i}}{\sqrt {i}}\right )} + 1} \), xi ∈ [− 600, 600]D, Multimodal and Non-separable (MN)

  14. (14)

    Schwefel2.26

    \({f_{14}}(\mathbf {X}) = 418.98{\text {*}}D - \sum \limits _{i = 1}^{D} {x_{i}^{}{\sin \limits } \left (\sqrt {\left | {{x_{i}}} \right |} \right )} \), xi ∈ [− 500, 500]D, Unimodal and Non-separable (UN)

  15. (15)

    Ackley

    \({f_{15}}(\mathbf {X}) = { - }20\exp \left \{ - 0.2\sqrt {\frac {1}{D}\sum \limits _{i = 1}^{D} {{x_{i}^{2}}} } \right \} - \exp \left \{ \frac {1}{D}\sum \limits _{i = 1}^{D} {{\cos \limits } (2\pi {x_{i}})} \right \} + 20 + e\), xi ∈ [− 32, 32]D, Multimodal and Non-separable (MN)

  16. (16)

    Penalized1

    \({f_{16}}(\mathbf {X}) = \frac {\pi }{D}\left \{ 10{\sin \limits ^{2}}(\pi {y_{1}}) + \sum \limits _{i = 1}^{D - 1} {{({y_{i}} - 1)}^{2}} \left [1\vphantom {+ 10{\sin \limits ^{2}}(\pi {y_{i + 1}})}\right .\right .\) \(\left .\left .+ 10{\sin \limits ^{2}}(\pi {y_{i + 1}})\right ] + {\left ({y_{D}} - 1\right )^{2}}\right \} + \sum \limits _{i = 1}^{D} {u({x_{i}},10,100,4)}\)

    \({y_{i}} = 1 + \frac {1}{4}({x_{i}} + 1), {u_{{x_{i}},a,k,m = }}\left \{ \begin {array}{l} k{({x_{i}} - a)^{m}}\quad {x_{i}} > a \\ 0\qquad \qquad \quad - a \le {x_{i}} \le a \\ k{({x_{i}} - a)^{m}}\quad {x_{i}} < - a \end {array} \right .\), xi ∈ [− 50, 50]D, Multimodal and Non-separable (MN)

  17. (17)

    Penalized2

    \({f_{17}}(\mathbf {X}) = \frac {1}{10}\left \{ {\sin \limits ^{2}}(\pi {x_{1}}) + \sum \limits _{i = 1}^{D - 1} {{({x_{i}} - 1)}^{2}} \left [1\vphantom {10{\sin \limits ^{2}}(3\pi {x_{i + 1}})}\right .\right .\) \(\left .\left .+10{\sin \limits ^{2}}(3\pi {x_{i + 1}})\right ] + {({x_{D}} - 1)^{2}}\left [1 + {\sin \limits ^{2}}(2\pi {x_{D}})\right ]\right \} + \sum \limits _{i = 1}^{D} {u({x_{i}},5,100,4)} \)

    xi ∈ [− 50, 50]D, Multimodal and Non-separable (MN)

  18. (18)

    Alpine

    \({f_{18}}(\mathbf {X}) = \sum \limits _{i = 1}^{D} {\left | {{x_{i}}{\sin \limits } ({x_{i}}) + 0.1{x_{i}}} \right |} \), xi ∈ [− 10, 10]D, Multimodal and Separable (MS)

  19. (19)

    Levy

    \({f_{19}}(\mathbf {X}) = \sum \limits _{i = 1}^{D - 1} {{{({x_{i}} - 1)}^{2}}\left [1 + {{{\sin \limits } }^{2}}(3\pi {x_{i + 1}})\right ]} + {\sin \limits ^{2}}(3\pi {x_{1}}) + \left | {{x_{D}} - 1} \right |\left [1 + {\sin \limits ^{2}}(3\pi {x_{D}})\right ]\), xi ∈ [− 10, 10]D, Multimodal and Non-separable (MN)

  20. (20)

    Weierstrass

    \({f_{20}}(\mathbf {X}) = \sum \limits _{i = 1}^{D} \left (\sum \limits _{k = 0}^{k_{{\max \limits } }} {\left [{a^{k}}{\cos \limits } \left (2\pi {b^{k}}({x_{i}} + 0.5)\right )\right ]} \right )\) \(- D\sum \limits _{k = 0}^{k_{{\max \limits } }} {\left [{a^{k}}{\cos \limits } (2\pi {b^{k}}0.5)\right ]} a = 0.5, b = 3, {k_{{\max \limits } }} = 20\)

    xi ∈ [− 0.5, 0.5]D, Multimodal and Non-separable (MN)

  21. (21)

    Schaffer

    \({f_{21}}(\mathbf {X}) = 0.5 + \frac {{{{\sin \limits } }^{2}}\left (\sqrt {\sum \limits _{i = 1}^{D} {x_{i}^{2}}} \right ) - 0.5}{{\left (1 + 0.001 * \left [\sum \limits _{i = 1}^{D} {x_{i}^{2}} \right ]\right )}^{2}}\), xi ∈ [− 100, 100]D, Multimodal and Non-separable (MN)

  22. (22)

    Himmelblau

    \({f_{22}}(\mathbf {X}) = \frac {1}{D}\sum \limits _{i = 1}^{D} {\left ({x_{i}^{4}} - 16{x_{i}^{2}} + 5{x_{i}}\right )} \), xi ∈ [− 5, 5]D, Multimodal and Separable (MS)

  23. (23)

    Michalewicz

    \({f_{23}}(\mathbf {X}) = { - }\sum \limits _{i = 1}^{D} {{\sin \limits } ({x_{i}}){{{\sin \limits } }^{20}}\left (\frac {i * {x_{i}^{2}}}{\pi }\right )} \), xi ∈ [0,π]D, Multimodal and Separable (MS)

  24. (24)

    Dixon&Price

    \({f_{24}}(\mathbf {X}) = {({x_{1}} - 1)^{2}} + \sum \limits _{i = 2}^{D} {i{{\left (2{x_{i}^{2}} - {x_{i - 1}}\right )}^{2}}} \), xi ∈ [− 10, 10]D, Unimodal and Non-separable (UN)

1.2 A.2. CEC2015 computationally expensive benchmark test functions

Table 9 CEC2015 computationally expensive benchmark test functions

1.3 A.3. CEC2011 real-world benchmark test functions

Table 10 Real-world problems selected from CEC2011

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Peng, Z., Cui, D. et al. Enhanced sooty tern optimization algorithm using multiple search guidance strategies and multiple position update modes for solving optimization problems. Appl Intell 53, 6763–6799 (2023). https://doi.org/10.1007/s10489-022-03635-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03635-9

Keywords

Navigation