Skip to main content
Log in

An improved black widow optimization algorithm for surfaces conversion

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Bézier surfaces and Q-Bézier surfaces are effective modeling tools for shape design in computer-aided geometric design, computer vision, and computer graphics. The mutual conversion between these two kinds of surfaces is a pivotal and knotty technique in CAD/CAM. In this paper, the conversion between Q-Bézier surfaces and rectangular Bézier surfaces is investigated. However, due to the uncertain parameters of the Q-Bézier surfaces, the approximation conversion from rectangular Bézier surfaces to Q-Bézier surfaces can be regarded as an optimization problem, which is effectively dealt with by swarm intelligence algorithm. In this regard, an enhanced Black Widow Optimization called LDBWO is proposed to find more suitable shape parameters to obtain optimal approximation Q-Bézier surfaces, which are closer to the given Bézier surfaces. The LDBWO algorithm overcomes the shortcomings of standard BWO algorithm such as low accuracy, slow convergence, and is easy to fall into local optimum by introducing golden sine learning strategy and diffusion process. Furthermore, to confirm and validate the performance of the LDBWO, eight well-known intelligent algorithms are compared with the LDBWO on various benchmark functions and engineering examples. Finally, by minimizing the conversion error defined by the L2-norm, the optimization model of the approximation conversion from rectangular Bézier surfaces to Q-Bézier surfaces is established. Several representative numerical examples are provided to illustrate the accuracy and efficiency of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Farin G (2002) Curves and surfaces for CAGD: a practical guide, fifth edn. Academic Press, San Diego

    Google Scholar 

  2. Hu G, Wu JL (2019) Generalized quartic H-Bézier curves: construction and application to developable surfaces. Adv Eng Softw 138:102723 (15 pages)

    Article  Google Scholar 

  3. Hu G, Wu JL, Qin XQ (2018) A novel extension of the Bézier model and its applications to surface modeling. Adv Eng Softw 125:27–54

    Article  Google Scholar 

  4. Punj A, Govil R, Balasundaram S (1997) A new approach in designing of local controlled curves and surfaces. Appl Math Lett 10:89–94

    Article  MathSciNet  MATH  Google Scholar 

  5. Oruc H, Phillips GH (2003) q-Bernstein polynomials and Bézier curves. J Comput Appl Math 151:1–12

    Article  MathSciNet  MATH  Google Scholar 

  6. Yang LQ, Zeng XM (2009) Bézier curves and surfaces with shape parameters. Int J Comput Math 86:1253–1263

    Article  MathSciNet  MATH  Google Scholar 

  7. Chu LC, Zeng XM (2014) Constructing curves and triangular patches by Beta functions. J Comput Appl Math 260:191–200

    Article  MathSciNet  MATH  Google Scholar 

  8. Bashir U, Abbas M, Jamaludin MA (2013) The G2 and C2 rational quadratic trigonometric Bézier curve with two shape parameters with applications. Appl Math Comput 219:10183–10197

    MathSciNet  MATH  Google Scholar 

  9. Qin XQ, Hu G, Zhang NJ, Shen XL, Yang Y (2013) A novel extension to the polynomial basis functions describing Bézier curves and surfaces of degree n with multiple shape parameters. Appl Math Comput 223:1–16

    MathSciNet  MATH  Google Scholar 

  10. Han XA, Ma YC, Huang XL (2008) A novel generalization of Bézier curve and surface. J Comput Appl Math 217:180–193

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu G, Bo CC, Wei G, Qin XQ (2020) Shape-adjustable generalized Bézier surfaces: construction and its geometric continuity conditions. Appl Math Comput 378:125215

    MathSciNet  MATH  Google Scholar 

  12. Hu G, Bo CC, Qin XQ (2018) Continuity conditions for tensor product Q-Bézier surfaces of degree (m, n). Comput Appl Math 37:4237–4258

    Article  MathSciNet  MATH  Google Scholar 

  13. Brneckner I (1980) Construction of Bézier points of quadrilaterals from those of triangles. Comput Aided Des 12:21–24

    Article  Google Scholar 

  14. Goldman RN, Daniel JF (1987) Conversion from Bézier rectangles to Bézier triangles. Comput Aided Des 19:25–27

    Article  MATH  Google Scholar 

  15. Hu SM (1993) Conversion between two classes of Bézier surfaces and geometric continuity jointing. Appl Math J Chin Univ 8A:290–299

    MATH  Google Scholar 

  16. Hu SM (1996) Conversion of a triangular Bézier patch into three rectangular Bézier patches. Comput Aided Geom Des 13:219–226

    Article  MATH  Google Scholar 

  17. Hu SM (2001) Conversion between triangular and rectangular Bézier patches. Comput Aided Geom Des 18:667–671

    Article  MATH  Google Scholar 

  18. Yan LL, Han XL, Liang JF (2014) Conversion between triangular Bézier patches and rectangular Bézier patches. Appl Math Comput 232:469–478

    MathSciNet  MATH  Google Scholar 

  19. Rahmanifard H, Plaksina T (2019) Application of artificial intelligence techniques in the petroleum industry: a review. Artif Intell Rev 52(4):2295–2318

    Article  Google Scholar 

  20. Zhang XT, Xu B, Zhang W, Zhang J, Ji XF (2020) Dynamic neighborhood-based particle swarm optimization for multimodal problems. Math Probl Eng 2020:6675996

    Article  Google Scholar 

  21. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  22. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  23. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarj M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comp Sy 97:849–872

    Article  Google Scholar 

  24. Dhiman G, Kumar V (2019) Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl-Based Syst 165:169–196

    Article  Google Scholar 

  25. Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152:113377

    Article  Google Scholar 

  26. Li SM, Chen HL, Wang MJ, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Future Gener Comp Sy 111:300–323

    Article  Google Scholar 

  27. Hu G, Du B, Wang XF, Wei G (2022) An enhanced black widow optimization algorithm for feature selection. Knowl-Based Syst 235:107638

    Article  Google Scholar 

  28. Abdel-Basset M, Mohamed R, AbdelAziz N, Abouhawwash M (2022) HWOA: a hybrid whale optimization algorithm with a novel local minima avoidance method for multi-level thresholding color image segmentation. Expert Syst Appl 190:116145

    Article  Google Scholar 

  29. Song BY, Wang ZD, Zou L (2021) An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve. Appl Soft Comput 100:106960

    Article  Google Scholar 

  30. Tirkolaee EB, Goli A, Weber GW (2020) Fuzzy mathematical programming and self-adaptive artificial fish swarm algorithm for just-in-time energy-aware flow shop scheduling problem with outsourcing option. IEEE T Fuzzy Syst 28(11):2772–2783

    Article  Google Scholar 

  31. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  32. Khalilpourazari S, SoheylDoulabi HH, Ciftcioglu AO, Weber GW (2021) Gradient-based grey wolf optimizer with Gaussian walk: application in modelling and prediction of the COVID-19 pandemic. Expert Syst Appl 177:114920

    Article  Google Scholar 

  33. Hu G, Zhu XN, Wei G, Chang CT (2021) An improved marine predators algorithm for shape optimization of developable Ball surfaces. Eng Appl Artif Intell 105:104417

    Article  Google Scholar 

  34. Yu C, Heidari AA, Xue X, Zhang L, Chen H, Chen W (2021) Boosting quantum rotation gate embedded slime mould algorithm. Expert Syst Appl 181:115082

    Article  Google Scholar 

  35. Zhu AJ, Gu ZQ, Hu C, Niu JH, Xu CP, Li Z (2021) Political optimizer with interpolation strategy for global optimization. PLoS One 16(5):e0251204

    Article  Google Scholar 

  36. Hayyolalam V, Pourhaji Kazem AA (2020) Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems. Appl Artif Intell 87:103249

    Article  Google Scholar 

  37. Houssein EH, Helmy B E-d, Oliva D, Elngar AA, Shaban H (2021) A novel Black Widow Optimization algorithm for multilevel thresholding image segmentation. Expert Syst Appl 167:114159

    Article  Google Scholar 

  38. Raju DN, Shanmugasundaram H, Sasikumar R (2021) Fuzzy segmentation and black widow-based optimal SVM for skin disease classification. Med Biol Eng Comput 59(10):2019–2035

    Article  Google Scholar 

  39. Suresh S, Rajan MR, Pushparaj J, Asha CS, Lal S, Reddy CR (2021) Dehazing of satellite images using adaptive black widow optimization-based framework. Int J Remote Sens 42(13):5072–5090

    Article  Google Scholar 

  40. Fu Y, Hou Y, Chen Z, Pu X, Gao K, Sadollah A (2022) Modelling and scheduling integration of distributed production and distribution problems via black widow optimization. Swarm Evol Comput 68:101015

    Article  Google Scholar 

  41. Tanyildizi E, Demir G (2017) Golden sine algorithm: a novel math-inspired algorithm. Adv Electr Comput En 17(2):71–78

    Article  Google Scholar 

  42. Kamboj VK, Nandi A, Bhadoria A, Sehgal S (2020) An intensify Harris hawks optimizer for numerical and engineering optimization problems. Appl Soft Comput 89:106018

    Article  Google Scholar 

  43. Guo XD, Zhang XL, Wang LF (2020) Fruit Fly optimization algorithm based on single-gene mutation for high-dimensional unconstrained optimization problems. Math Probl Eng 2020:8

    Article  Google Scholar 

  44. Saxena A, Kumar R, Das S (2019) beta-Chaotic map enabled Grey Wolf Optimizer. Appl Soft Comput 75:84–105

    Article  Google Scholar 

  45. M. Molga, C. J. Smutnicki, Test functions for optimization needs. (2005)

  46. Jamil M, Yang XS (2013) A literature survey of benchmark functions for global optimization problems. Int J Math Model Numer Optim 4(2):150–194

    MATH  Google Scholar 

  47. Qu BY, Liang JJ, Wang ZY, Chen Q, Suganthan PN (2016) Novel benchmark functions for continuous multimodal optimization with comparative results. Swarm Evol Comput 26:23–34

    Article  Google Scholar 

  48. Hashim FA, Hussain K, Houssein EH, Mabrouk MS, Al-Atabany W (2021) Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell 51(3):1531–1551

    Article  MATH  Google Scholar 

  49. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness MAA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250

    Article  Google Scholar 

  50. Kaur S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541

    Article  Google Scholar 

  51. Dhiman G, Garg M, Nagar A, Kumar V, Dehghani M (2021) A novel algorithm for global optimization: rat swarm optimizer. J Ambient Intell Humaniz Comput 12(8):8457–8482

    Article  Google Scholar 

  52. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  53. Hu G, Dou WT, Wang XF, Abbas M (2022) An enhanced chimp optimization algorithm for optimal degree reduction of said–ball curves. Math Comput Simul 197:207–252

    Article  MathSciNet  MATH  Google Scholar 

  54. Rashedi EH, Nezamabadi-Pour H, Saryazdi S (2009) GSA: A Gravitational Search Algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  55. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Article  Google Scholar 

  56. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13:2592–2612

    Article  Google Scholar 

  57. Gupta S, Deep K, Mirjalili S, Kim JH (2020) A modified sine cosine algorithm with novel transition parameter and mutation operator for global optimization. Expert Syst Appl 154:113395

    Article  Google Scholar 

  58. Hu G, Li M, Wang XF, Wei G, Chang CT (2022) An enhanced manta ray foraging optimization algorithm for shape optimization of complex CCG-ball curves. Knowl-Based Syst 240:108071

    Article  Google Scholar 

  59. Rababah A, Mann S (2011) Iterative process for G2-multi degree reduction of Bézier curves. Appl Math Comput 217:8126–8133

    MathSciNet  MATH  Google Scholar 

  60. Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: past, present, and future. Multimed Tools Appl 80(5):8091–8126

    Article  Google Scholar 

  61. Ghasemi A, Ashoori A, Heavey C (2021) Evolutionary learning based simulation optimization for stochastic job shop scheduling problems. Appl Soft Comput 106:107309

    Article  Google Scholar 

  62. Larabi-Marie-Sainte S, Alskireen R, Alhalawani S (2021) Emerging applications of bio-inspired algorithms in image segmentation. Electronics-Switz. 110(24):3116

    Article  Google Scholar 

  63. Mingxue O, Xi J, Bai W, Li K (2022) Band-area application container and artificial fish swarm algorithm for multi-objective optimization in internet-of-things cloud. IEEE Access 10:16408–16423

    Article  Google Scholar 

  64. Hu G, Zhong J, Du B, Wei G (2022) An enhanced hybrid arithmetic optimization algorithm for engineering applications. Comput Methods Appl Mech Eng 394:114901

    Article  MathSciNet  MATH  Google Scholar 

  65. Wang X, Wang Y, Wong K, Li X (2022) A self-adaptive weighted differential evolution approach for large-scale feature selection. Knowl-Based Syst 235:107633

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 51875454).

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Availability of data and materials

All data generated or analysed during this study are included in this published article (and its supplementary information files).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Hu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Du, B. & Wang, X. An improved black widow optimization algorithm for surfaces conversion. Appl Intell 53, 6629–6670 (2023). https://doi.org/10.1007/s10489-022-03715-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03715-w

Keywords

Navigation