Skip to main content
Log in

Frobenius norm-regularized robust graph learning for multi-view subspace clustering

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Graph learning methods have been widely used for multi-view clustering. However, such methods have the following challenges: (1) they usually perform simple fusion of fixed similarity graph matrices, ignoring its essential structure. (2) they are sensitive to noise and outliers because they usually learn the similarity matrix from the raw features. To solve these problems, we propose a novel multi-view subspace clustering method named Frobenius norm-regularized robust graph learning (RGL), which inherits desirable advantages (noise robustness and local information preservation) from the subspace clustering and manifold learning. Specifically, RGL uses Frobenius norm constraint and adjacency similarity learning to simultaneously explore the global information and local similarity of views. Furthermore, the l2,1 norm is imposed on the error matrix to remove the disturbance of noise and outliers. An effectively iterative algorithm is designed to solve the RGL model by the alternation direction method of multipliers. Extensive experiments on nine benchmark databases show the clear advantage of the proposed method over fifteen state-of-the-art clustering methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://mlg.ucd.ie/datasets/segment.html

  2. http://www.uk.research.att.com/facedatabase.html

  3. http://vasc.ri.cmu.edu/idb/html/face/

  4. http://www.cs.columbia.edu/CAVE/software/softlib/

  5. http://research.microsoft.com/en-us/projects/objectclassrecognition/

  6. https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set

  7. http://archive.ics.uci.edu/ml/datasets/Multiple+Features

References

  1. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  Google Scholar 

  2. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J, et al. (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends®; in Machine learning 3(1):1–122

    Article  Google Scholar 

  3. Brbić M, Kopriva I (2020) l0-motivated low-rank sparse subspace clustering. IEEE Trans Cybern 50(4):1711–1725

    Article  Google Scholar 

  4. Cao X, Zhang C, Fu H, Liu S, Zhang H (2015) Diversity-induced multi-view subspace clustering. In: Proc IEEE conf Comput Vis Pattern recognit, pp 586–594

  5. Chao G (2018) Discriminative k-means laplacian clustering. Neural Process Lett, pp 1–13

  6. Chao G, Sun J, Lu J, Wang AL, Langleben DD, Li CS, Bi J (2019) Multi-view cluster analysis with incomplete data to understand treatment effects. Inf Sci 494

  7. Chao G, Sun S, Bi J (2021) A survey on multi-view clustering. IEEE Trans Artif Intell

  8. Chen MS, Huang L, Wang CD, Huang D (2020) Multi-view clustering in latent embedding space. In: Proc AAAI conf Artif Intell

  9. Chen Y, Wang S, Peng C, Hua Z, Zhou Y (2021) Generalized nonconvex low-rank tensor approximation for multi-view subspace clustering. IEEE Trans Image Process 30:4022–4035

    Article  MathSciNet  Google Scholar 

  10. Chen Y, Wang S, Xiao X, Liu Y, Hua Z, Zhou Y (2021) Self-paced enhanced low-rank tensor kernelized multi-view subspace clustering. IEEE Trans on Multimedia

  11. Chen Y, Wang S, Zheng F, Cen Y (2020) Graph-regularized least squares regression for multi-view subspace clustering. Knowl-Based Syst 194:105482

    Article  Google Scholar 

  12. Chen Y, Xiao X, Hua Z, Zhou Y (2021) Adaptive transition probability matrix learning for multiview spectral clustering. IEEE Trans Neural Netw Learn Syst

  13. Chen Y, Xiao X, Zhou Y (2019) Low-rank quaternion approximation for color image processing. IEEE Trans Image Process 29(1):1426–1439

    MathSciNet  MATH  Google Scholar 

  14. Chen Y, Xiao X, Zhou Y (2019) Multi-view clustering via simultaneously learning graph regularized low-rank tensor representation and affinity matrix. In: Proc IEEE int Conf Multimedia expo, IEEE, pp 1348–1353

  15. Duchi J, Shalev-Shwartz S, Singer Y, Chandra T (2008) Efficient projections onto the l 1-ball for learning in high dimensions. In: Proc Int Conf Mach Learn, pp 272–279

  16. Elhamifar E, Vidal R (2013) Sparse subspace clustering: Algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  Google Scholar 

  17. Fei-Fei L, Perona P (2005) A bayesian hierarchical model for learning natural scene categories. In: Proc IEEE conf Comput Vis Pattern recognit, vol 2, IEEE, pp 524–531

  18. Guo J, Yin W, Sun Y, Hu Y (2019) Multi-view subspace clustering with block diagonal representation. IEEE Access 7:84829–84838

    Article  Google Scholar 

  19. He T, Liu Y, Ko TH, Chan KC, Ong YS (2019) Contextual correlation preserving multiview featured graph clustering. IEEE Trans Cybern 50(10):4318–4331

    Article  Google Scholar 

  20. Hu Z, Nie F, Wang R, Li X (2020) Multi-view spectral clustering via integrating nonnegative embedding and spectral embedding. Information Fusion 55:251–259

    Article  Google Scholar 

  21. Li K, Li S, Ding Z (2018) Latent discriminant subspace representations for multi-view outlier detection. In: Proc AAAI conf Artif Intell, pp 3522–3529

  22. Li S, Shao M, Fu Y (2018) Multi-view low-rank analysis with applications to outlier detection. ACM Trans Knowl Discov Data 12(3)

  23. Lin Z, Liu R, Su Z (2011) Linearized alternating direction method with adaptive penalty for low-rank representation. In: Proc Neural inf Process Syst, pp 612–620

  24. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  25. Liu M, Wang Y, Sun J, Ji Z (2021) Adaptive low-rank kernel block diagonal representation subspace clustering. Appl Intell, pp 1–16

  26. Lu C, Feng J, Lin Z, Mei T, Yan S (2019) Subspace clustering by block diagonal representation. IEEE Trans Pattern Anal Mach Intell 41(2):487–501

    Article  Google Scholar 

  27. Lu C, Feng J, Lin Z, Yan S (2013) Correlation adaptive subspace segmentation by trace lasso. In: Proc IEEE int Conf Comput Vis, pp 1345–1352

  28. Lu CY, Min H, Zhao ZQ, Zhu L, Huang DS, Yan S (2012) Robust and efficient subspace segmentation via least squares regression. In: Proc Eur Conf Comput Vis, Springer, pp 347–360

  29. Luo D, Nie F, Ding C, Huang H (2011) Multi-subspace representation and discovery. In: Proc Eur Conf Mach Learn, pp 405–420

  30. M B I (2018) Multi-view low-rank sparse subspace clustering. Pattern Recognit 73:247–258

    Article  Google Scholar 

  31. Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: Analysis and an algorithm. In: Proc Neural inf Process Syst, pp 849–856

  32. Nie F, Cai G, Li J, Li X (2018) Auto-weighted multi-view learning for image clustering and semi-supervised classification. IEEE Trans Image Process 27(3):1501–1511

    Article  MathSciNet  Google Scholar 

  33. Nie F, Cai G, Li X (2017) Multi-view clustering and semi-supervised classification with adaptive neighbours. In: Proc AAAI conf Artif Intell

  34. Nie F, Li J, Li X (2017) Self-weighted multiview clustering with multiple graphs. In: Proc Int Joint conf Artif Intell, pp 2564–2570

  35. Nie F, Tian L, Li X (2018) Multiview clustering via adaptively weighted procrustes. In: Proc ACM SIGKDD int Conf Knowl Disc Data min, ACM, pp 2022–2030

  36. Nie F, Wang H, Deng C, Gao X, Li X, Huang H (2016) New l1-norm relaxations and optimizations for graph clustering. In: Proc AAAI conf Artif Intell

  37. Peng C, Cheng Q (2020) Discriminative ridge machine: a classifier for high-dimensional data or imbalanced data. IEEE Trans Neural Netw Learn Syst, pp 1–15

  38. Tang Y, Xie Y, Yang X, Niu J, Zhang W (2021) Tensor multi-elastic kernel self-paced learning for time series clustering. IEEE Trans Knowl Data Eng 33:1223–1237

    Google Scholar 

  39. Tang Y, Xie Y, Zhang C, Zhang W (2021) Constrained tensor representation learning for multi-view semi-supervised subspace clustering. IEEE Trans on Multimedia

  40. Tang Y, Xie Y, Zhang C, Zhang Z, Zhang W (2021) One-step multiview subspace segmentation via joint skinny tensor learning and latent clustering. IEEE Trans Cybern

  41. Wang H, Yang Y, Liu B (2020) GMC: Graph-based multi-view clustering. IEEE Trans Knowl Data Eng 32(6):1116–1129

    Article  Google Scholar 

  42. Wang H, Yang Y, Liu B, Fujita H (2019) A study of graph-based system for multi-view clustering. Knowl-Based Syst 163:1009–1019

    Article  Google Scholar 

  43. Wang S, Chen Y, Jin Y, Cen Y, Li Y, Zhang L (2021) Error-robust low-rank tensor approximation for multi-view clustering. Knowl-Based Syst 215:106745

    Article  Google Scholar 

  44. Wang X, Guo X, Lei Z, Zhang C, Li SZ (2017) Exclusivity-consistency regularized multi-view subspace clustering. In: Proc IEEE conf Comput Vis Pattern recognit, pp 923–931

  45. Wu J, Lin Z, Zha H (2019) Essential tensor learning for multi-view spectral clustering. IEEE Trans Image Process 28(12):5910–5922

    Article  MathSciNet  Google Scholar 

  46. Xia R, Pan Y, Du L, Yin J (2014) Robust multi-view spectral clustering via low-rank and sparse decomposition. In: Proc AAAI conf Artif Intell

  47. Xiao Q, Dai J, Luo J, Fujita H (2019) Multi-view manifold regularized learning-based method for prioritizing candidate disease mirnas. Knowl-Based Syst 175:118–129

    Article  Google Scholar 

  48. Zhan K, Nie F, Wang J (2019) Multiview consensus graph clustering. IEEE Trans Image Process 28(3):1261–1270

    Article  MathSciNet  Google Scholar 

  49. Zhan K, Zhang C, Guan J (2018) Graph learning for multiview clustering. IEEE Trans Cybern 48(10):2887–2895

    Article  Google Scholar 

  50. Zhang C, Fu H, Hu Q, Cao X, Xie Y, Tao D, Xu D (2020) Generalized latent multi-view subspace clustering. IEEE Trans Pattern Anal Mach Intell 42(1):86–99

    Article  Google Scholar 

  51. Zhang C, Fu H, Liu S, Liu G, Cao X (2015) Low-rank tensor constrained multiview subspace clustering. In: Proc IEEE int Conf Comput Vis, pp 1582–1590

  52. Zhang GY, Chen XW, Zhou YR, Wang CD, Huang D, He XY (2021) Kernelized multi-view subspace clustering via auto-weighted graph learning. Appl Intell, pp 1–16

  53. Zhang X, Yang Y, Li T, Zhang Y, Wang H, Fujita H (2021) Cmc: a consensus multi-view clustering model for predicting alzheimers disease progression. Comput Methods Prog Biomed 199:105895

    Article  Google Scholar 

  54. Zhou D, Huang J, Schölkopf B (2005) Learning from labeled and unlabeled data on a directed graph. In: Proc Int Conf Mach Learn, ACM, pp 1036–1043

  55. Zhou T, Zhang C, Peng X (2019) Dual shared-specific multiview subspace clustering. IEEE Trans Cybern, pp 1–14

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 62106063, 62002301, the Guangdong Natural Science Foundation under Grant 2022A1515010819, the Shenzhen College Stability Support Plan under Grant GXWD20201230155427003-20200824113231001, and Chongqing Technology Innovation and Application Demonstration Project under Grant cstc2018jscx-msybX0115.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyong Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Multi-view Learning

Guest Editors: Guoqing Chao, Xingquan Zhu, Weiping Ding, Jinbo Bi and Shiliang Sun

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Chen, Y., Yi, S. et al. Frobenius norm-regularized robust graph learning for multi-view subspace clustering. Appl Intell 52, 14935–14948 (2022). https://doi.org/10.1007/s10489-022-03816-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03816-6

Keywords

Navigation