Skip to main content
Log in

Online Markov Blanket Learning for High-Dimensional Data

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Since the Markov blanket (MB) of a class variable captures the causal relationship between the class variable and selected features, employing the MB of a class variable for feature selection improves the interpretability and robustness of the predictive model. Online MB learning aims to identify the MB with streaming features. However, the only existing online MB learning algorithm needs to enumerate the subsets of selected PC (i.e., parents and children) and spouses and may include false-positives in the found MB, thus affecting the efficiency and accuracy on high-dimensional data. To address this issue, in this paper, we propose two online MB learning algorithms, called Online SimulTaneous MB learning (O-ST) algorithm and Online Divide-and-Conquer MB learning (O-DC) algorithm. When a new feature arrived, O-ST simultaneously learns the PC and spouses (i.e., the MB) conditioned on the currently selected MB, and O-DC learns the PC and spouses separately by sequentially comparing the mutual information in the currently selected PC. The comprehensive experimental results validate that the proposed algorithms achieve higher efficiency and better accuracy than the state-of-the-art online MB learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. These datasets are publicly available at http://pages.mtu.edu/~lebrown/supplements/mmhc_paper/mmhc_index.html.

References

  1. Pearl J (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco

    MATH  Google Scholar 

  2. Pearl J (2014) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Elsevier, Amsterdam

    MATH  Google Scholar 

  3. Aliferis CF, Statnikov A, Tsamardinos I, Mani S, Koutsoukos XD (2010) Local causal and markov blanket induction for causal discovery and feature selection for classification part I: algorithms and empirical evaluation. J Mach Learn Res 11(1):171–234

    MathSciNet  MATH  Google Scholar 

  4. Aliferis CF, Statnikov A, Tsamardinos I, Mani S, Koutsoukos XD (2010) Local causal and markov blanket induction for causal discovery and feature selection for classification part ii: Analysis and extensions. J Mach Learn Res 11(Jan):235–284

    MathSciNet  MATH  Google Scholar 

  5. Yu K, Liu L, Li J (2021) A unified view of causal and non-causal feature selection. ACM Trans Knowl Discov Data 15(4):1–46

    Article  Google Scholar 

  6. Guyon I, Aliferis C, et al. (2007) Causal feature selection. In: Computational methods of feature selection, pp 75–97, Chapman and hall/CRC, New York

  7. Yu K, Liu L, Li J, Ding W, Le TD (2019) Multi-source causal feature selection. IEEE Trans Pattern Anal Mach Intell 42(9):2240–2256

    Article  Google Scholar 

  8. Yu K, Guo X, Liu L, Li J, Wang H, Ling Z, Wu X (2020) Causality-based feature selection: Methods and evaluations. ACM Comput Surv 53(5):1–36

    Article  Google Scholar 

  9. Wu X, Yu K, Ding W, Wang H, Zhu X (2012) Online feature selection with streaming features. IEEE Trans Pattern Anal Mach Intell 35(5):1178–1192

    Google Scholar 

  10. Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, Liu H (2017) Feature selection: A data perspective. ACM Comput Surv 50(6):1–45

    Article  Google Scholar 

  11. Hosu V, Lin H, Sziranyi T, Saupe D (2020) Koniq-10k: an ecologically valid database for deep learning of blind image quality assessment. IEEE Trans Image Process 29:4041–4056

    Article  MATH  Google Scholar 

  12. You D, Li R, Liang S, Sun M, Ou X, Yuan F, Shen L, Wu X (2021) Online causal feature selection for streaming features. IEEE Trans Neural Netw Learn Syst, https://doi.org/10.1109/TNNLS.2021.3105585

  13. Hu W, Yang S, Guo X, Yu K (2021) Accelerating learning bayesian network structures by reducing redundant ci tests. In: International conference on big knowledge (ICBK). IEEE, pp 46–53

  14. Tsamardinos I, Aliferis CF, Statnikov AR, Statnikov E (2003) Algorithms for large scale markov blanket discovery. In: FLAIRS conference, vol 2, pp 376–380

  15. Borboudakis G, Tsamardinos I (2019) Forward-backward selection with early dropping. J Mach Learn Res 20(1):276– 314

    MathSciNet  MATH  Google Scholar 

  16. Guo X, Yu K, Cao F, Li P, Wang H (2022) Error-aware markov blanket learning for causal feature selection. Inf Sci 589:849– 877

    Article  Google Scholar 

  17. Zhang H, Zhou S, Zhang K, Guan J (2017) Causal discovery using regression-based conditional independence tests. In: Thirty-first AAAI conference on artificial intelligence

  18. Salimi B, Parikh H, Kayali M, Getoor L, Roy S, Suciu D (2020) Causal relational learning. In: Proceedings of the 2020 ACM SIGMOD international conference on management of data, pp 241–256

  19. Pena JM, Nilsson R, Björkegren J, Tegnér J (2007) Towards scalable and data efficient learning of markov boundaries. Int J Approx Reason 45(2):211–232

    Article  MATH  Google Scholar 

  20. Gao T, Ji Q (2017) Efficient markov blanket discovery and its application. IEEE Trans Cybern 47(5):1169–1179

    Article  MathSciNet  Google Scholar 

  21. Ling Z, Yu K, Wang H, Liu L, Ding W, Wu X (2019) Bamb: A balanced markov blanket discovery approach to feature selection. ACM Trans Intell Syst Technol 10(5):1–25

    Article  Google Scholar 

  22. Wang H, Ling Z, Yu K, Wu X (2020) Towards efficient and effective discovery of markov blankets for feature selection. Inf Sci 509:227–242

    Article  Google Scholar 

  23. Wu X, Jiang B, Yu K, Chen H (2019) Accurate markov boundary discovery for causal feature selection. IEEE Trans Cybern 50(12):4983–4996

    Article  Google Scholar 

  24. Wang Y, Li X, Ruiz R (2018) Weighted general group lasso for gene selection in cancer classification. IEEE Trans Cybern 49(8):2860–2873

    Article  Google Scholar 

  25. Jiang B, Li C, Rijke MD, Yao X, Chen H (2019) Probabilistic feature selection and classification vector machine. ACM Trans Knowl Discov Data 13(2):1–27

    Article  Google Scholar 

  26. Zhou P, Chen J, Du L, Li X (2022) Balanced spectral feature selection. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2022.3160244

  27. Cui X, Li Y, Fan J, Wang T (2022) A novel filter feature selection algorithm based on relief. Appl Intell 52(5):5063–5081

    Article  Google Scholar 

  28. Das A, Kempe D (2018) Approximate submodularity and its applications: Subset selection, sparse approximation and dictionary selection. J Mach Learn Res 19(1):74–107

    MathSciNet  MATH  Google Scholar 

  29. Zhou H, Wang X, Zhu R (2022) Feature selection based on mutual information with correlation coefficient. Appl Intell 52(5):5457–5474

    Article  Google Scholar 

  30. Yu K, Wu X, Ding W, Pei J (2016) Scalable and accurate online feature selection for big data. ACM Trans Knowl Discov Data 11(2):1–39

    Article  Google Scholar 

  31. Zhou P, Li P, Zhao S, Wu X (2020) Feature interaction for streaming feature selection. IEEE Trans Neural Netw Learn Syst 32(10):4691–4702

    Article  MathSciNet  Google Scholar 

  32. Zhou P, Zhao S, Yan Y, Wu X (2022) Online scalable streaming feature selection via dynamic decision. ACM Trans Knowl Discov Data 16(5):1–20

    Article  Google Scholar 

  33. Spirtes P, Glymour CN, Scheines R (2000) causation, prediction, and search. MIT press, Cambridge

  34. Bonnlander BV, Weigend AS (1994) Selecting input variables using mutual information and nonparametric density estimation. In: Proceedings of the 1994 international symposium on artificial neural networks (ISANN94), pp 42–50, Citeseer

  35. Ling Z, Yu K, Zhang Y, Liu L, Li J (2021) Causal learner: A toolbox for causal structure and markov blanket learning. arXiv:2103.06544

  36. Dheeru D, Karra Taniskidou E (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 15 June 2022

  37. Yu K, Liu L, Li J (2019) Learning markov blankets from multiple interventional data sets. IEEE Trans Neural Netw Learn Syst 31(6):2005–2019

    Article  MathSciNet  Google Scholar 

  38. Szymanski P, Kajdanowicz T (2019) Scikit-multilearn: A scikit-based python environment for performing multi-label classification. J Mach Learn Res 20(1):209–230

    Google Scholar 

  39. Yu K, Yang Y, Ding W (2022) Causal feature selection with missing data. ACM Trans Knowl Discov Data 16(4):1– 24

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2019YFB1704101), the National Natural Science Foundation of China (No. U1936220, 61872002, and 62006003), and the Natural Science Foundation of Anhui Province of China (No. 2108085QF270 and 2008085QF307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwen Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhaolong Ling and Haifeng Ling contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, Z., Li, B., Zhang, Y. et al. Online Markov Blanket Learning for High-Dimensional Data. Appl Intell 53, 5977–5997 (2023). https://doi.org/10.1007/s10489-022-03841-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03841-5

Keywords

Navigation