Skip to main content
Log in

A many-objective evolutionary algorithm based on corner solution and cosine distance

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Most many-objective optimization algorithms focus on balancing convergence and diversity, instead of attaching importance to the contribution of the boundary solution. The boundary solution is beneficial for enhancing the PF coverage; therefore, we propose a many-objective evolutionary algorithm based on the corner solution and cosine distance (MaOEA-CSCD) to balance convergence and diversity, as well as protect the PF boundary. We set a corner solution archive to store the corner solutions and apply these corner solutions and cosine distance in the mating strategy to improve the quality of the parents to generate high-quality offspring. In environmental selection, a greedy strategy is applied to select the corner solution and the solution with better convergence to overcome the insufficient selection pressure while protecting the PF boundary and guaranteeing the search space. Then, a selection–deletion strategy is used to balance convergence and diversity, it first selects solutions based on the maximum cosine distance, and then considers replacement solutions based on convergence. The comparison of MaOEA-CSCD with six algorithms on 25 benchmark and three real-world optimization problems shows that it is competitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang M, Wang L, Li W, Hu B, Li D, Wu Q (2021) Many-objective evolutionary algorithm with adaptive reference vector. Inf Sci 563:70–90. https://doi.org/10.1016/j.ins.2021.01.015

    MathSciNet  Google Scholar 

  2. Di Matteo M, Maier HR, Dandy GC (2019) Many-objective portfolio optimization approach for stormwater management project selection encouraging decision maker buy-in. Environ Model Softw 111:340–355. https://doi.org/10.1016/j.envsoft.2018.09.008

    Google Scholar 

  3. Xu J, Zhang Z, Hu Z, Du L, Cai X (2021) A many-objective optimized task allocation scheduling model in cloud computing. Appl Intell 51(6):3293–3310. https://doi.org/10.1007/s10489-020-01887-x

    Google Scholar 

  4. Hu Z, Wei Z, Sun H, Yang J, Wei L (2021) Optimization of metal rolling control using soft computing approaches: a review. Arch Comput Methods Eng 28(2):405–421. https://doi.org/10.1007/s11831-019-09380-6

    Google Scholar 

  5. Hu Z, Wei Z, Ma X, Sun H, Yang J (2020) Multi-parameter deep-perception and many-objective autonomous-control of rolling schedule on high speed cold tandem mill. ISA Transactions 102:193–207. https://doi.org/10.1016/j.isatra.2020.02.024

    Google Scholar 

  6. Liang Z, Luo T, Hu K, Ma X, Zhu Z (2020) An indicator-based many-objective evolutionary algorithm with boundary protection. IEEE Trans Cybern, p 1–14. https://doi.org/10.1109/TCYB.2019.2960302

  7. Liu Y, Gong D, Sun J, Jin Y (2017) A many-objective evolutionary algorithm using a one-by-one selection strategy. IEEE Trans Cybern 47(9):2689–2702. https://doi.org/10.1109/TCYB.2016.2638902

    Google Scholar 

  8. Liu Y, Zhu N, Li K, Li M, Zheng J, Li K (2020) An angle dominance criterion for evolutionary many-objective optimization. Inf Sci 509:376–399. https://doi.org/10.1016/j.ins.2018.12.078

    MathSciNet  MATH  Google Scholar 

  9. Li M, Yang S, Liu X (2014) Shift-based density estimation for pareto-based algorithms in many-objective optimization. IEEE Trans Evol Comput 18(3):348–365. https://doi.org/10.1109/TEVC.2013.2262178

    Google Scholar 

  10. Tian Y, Cheng R, Zhang X, Su Y, Jin Y (2018) A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization. IEEE Trans Evol Comput 23 (2):331–345. https://doi.org/10.1109/TEVC.2018.2866854

    Google Scholar 

  11. Narukawa K (2013) Effect of dominance balance in many-objective optimization. in Evolutionary Multi-Criterion Optimization. Springer, Berlin, pp 276–290

    Google Scholar 

  12. Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19:45–76. https://doi.org/10.1162/EVCO_a_00009

    Google Scholar 

  13. Shang K, Ishibuchi H (2020) A new hypervolume-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 24(5):839–852. https://doi.org/10.1109/TEVC.2020.2964705

    Google Scholar 

  14. Jiang S, Zhang J, Ong Y-S, Zhang AN, Tan PS (2014) A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm. IEEE Trans Cybern 45(10):2202–2213. https://doi.org/10.1109/TCYB.2014.2367526

    Google Scholar 

  15. Deb K, Mohan M, Mishra S (2005) Evaluating the -domination based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions. Trans Cybern 13(4):501–525. https://doi.org/10.1162/106365605774666895

    Google Scholar 

  16. Brockhoff D, Zitzler E (2007) Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods. In: 2007 IEEE Congress on Evolutionary Computation. https://doi.org/10.1109/CEC.2007.4424730, pp 2086–2093

  17. Sun Y, Yen GG, Yi Z (2018) IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans Evol Comput 23(2):173–187. https://doi.org/10.1109/TEVC.2018.2791283

    Google Scholar 

  18. Hernández Gómez R, Coello Coello CA (2015) Improved metaheuristic based on the R2 indicator for many-objective optimization. In: Proceedings of the 2015 annual conference on genetic and evolutionary computation. https://doi.org/10.1145/2739480.2754776, pp 679–686

  19. Li F, Cheng R, Liu J, Jin Y (2018) A two-stage R2 indicator based evolutionary algorithm for many-objective optimization. Appl Soft Comput 67:245–260. https://doi.org/10.1016/j.asoc.2018.02.048

    Google Scholar 

  20. Jiao RLWBL (2020) A decomposition-based evolutionary algorithm with correlative selection mechanism for many-objective optimization. Evol Comput 29(3):1–36. https://doi.org/10.1162/evco_a_00279

    Google Scholar 

  21. Li Z, Lin K, Nouioua M, Jiang S, Gu Y (2019) DCDG-EA: Dynamic convergence–diversity guided evolutionary algorithm for many-objective optimization. Expert Systems with Applications 118:35–51. https://doi.org/10.1016/j.eswa.2018.09.025

    Google Scholar 

  22. Xiang Y, Zhou Y, Li M, Chen Z (2016) A vector angle-based evolutionary algorithm for unconstrained many-objective optimization. IEEE Trans Evol Comput 21(1):131–152. https://doi.org/10.1109/TEVC.2016.2587808

    Google Scholar 

  23. Pan C, Huang J, Hao J, Gong J (2020) Towards zero-shot learning generalization via a cosine distance loss. Neurocomputing 381:167–176. https://doi.org/10.1016/j.neucom.2019.11.011

    Google Scholar 

  24. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary methods for design, optimization and control with applications to industrial problems. Proceedings of the EUROGEN’2001. Athens. Greece, September 19-21. https://doi.org/10.3929/ethz-a-004284029

  25. Yuan J, Liu H-L, Gu F, Zhang Q, He Z (2021) Investigating the properties of indicators and an evolutionary many-objective algorithm using promising regions. IEEE Trans Evol Comput 25(1):75–86. https://doi.org/10.1109/TEVC.2020.2999100

    Google Scholar 

  26. Zhou J, Gao L, Li X, Zhang C, Hu C (2021) Hyperplane-driven and projection-assisted search for solving many-objective optimization problems. Inf Sci 574:394–412. https://doi.org/10.1016/j.ins.2021.05.080

    MathSciNet  Google Scholar 

  27. Zhou J, Rao S, Gao L, Lu C, Zheng J, Chan FTS (2022) Self-regulated bi-partitioning evolution for many-objective optimization. Inf Sci 589:827–848. https://doi.org/10.1016/j.ins.2021.12.103

    Google Scholar 

  28. Singh HK, Isaacs A, Ray T (2011) A pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems. IEEE Trans Evol Comput 15 (4):539–556. https://doi.org/10.1109/TEVC.2010.2093579

    Google Scholar 

  29. Wang H, Yao X (2014) Corner sort for pareto-based many-objective optimization. IEEE Trans Cybern 44(1):92–102. https://doi.org/10.1109/TCYB.2013.2247594

    Google Scholar 

  30. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017

    Google Scholar 

  31. Zhou J, Yao X, Gao L, Hu C (2021) An indicator and adaptive region division based evolutionary algorithm for many-objective optimization. Appl Soft Comput 99:106872. https://doi.org/10.1016/j.asoc.2020.106872

    Google Scholar 

  32. Liang Z, Hu K, Ma X, Zhu Z (2021) A many-objective evolutionary algorithm based on a two-round selection strategy. IEEE Transactions on Cybernetics 51(3):1417–1429. https://doi.org/10.1109/TCYB.2019.2918087

    Google Scholar 

  33. Liang Z, Zeng J, Liu L, Zhu Z (2021) A many-objective optimization algorithm with mutation strategy based on variable classification and elite individual. Swarm Evol Comput 60:100769. https://doi.org/10.1016/j.swevo.2020.100769

    Google Scholar 

  34. Qiu W, Zhu J, Wu G, Fan M, Suganthan PN (2021) Evolutionary many-objective algorithm based on fractional dominance relation and improved objective space decomposition strategy. Swarm Evol Comput 60:100776. https://doi.org/10.1016/j.swevo.2020.100776

    Google Scholar 

  35. Xiong Z, Yang J, Hu Z, Zhao Z, Wang X (2021) Evolutionary many-objective optimization algorithm based on angle and clustering. Appl Intell 51(4):2045–2062. https://doi.org/10.1007/s10489-020-01874-2

    Google Scholar 

  36. Zhang P, Li J, Li T, Chen H (2020) A new many-objective evolutionary algorithm based on determinantal point processes. IEEE Trans Evol Comput 25(2):334–345. https://doi.org/10.1109/TEVC.2020.3035825

    Google Scholar 

  37. Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Complex Syst 9(2):115–148

    MathSciNet  MATH  Google Scholar 

  38. Deb K, Goyal M (1996) A combined genetic adaptive search (geneAS) for engineering design. Computer Science and informatics 26:30–45

    Google Scholar 

  39. Su Y, Luo N, Lin Q, Li X (2022) Many-objective optimization by using an immune algorithm. Swarm Evol Comput 69:101026. https://doi.org/10.1016/j.swevo.2021.101026

    Google Scholar 

  40. Li M, Yao X (2019) Quality evaluation of solution sets in multiobjective optimisation: a survey. ACM Computing Surveys (CSUR) 52(2):1–38. https://doi.org/10.1145/3300148

    Google Scholar 

  41. Zitzler E, Thiele L, Laumanns M, Fonseca CM, Da Fonseca VG (2003) Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans Evol Comput 7(2):117–132. https://doi.org/10.1109/TEVC.2003.810758

    Google Scholar 

  42. Kung HT, Luccio F, Preparata FP (1975) On finding the maxima of a set of vectors. J. ACM 22(4):469–476. https://doi.org/10.1145/321906.321910

    MathSciNet  MATH  Google Scholar 

  43. Jensen MT (2003) Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms. IEEE Trans Evol Comput 7(5):503–515. https://doi.org/10.1109/TEVC.2003.817234

    Google Scholar 

  44. Deb K, Jain H (2013) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601. https://doi.org/10.1109/TEVC.2013.2281535

    Google Scholar 

  45. Li L, Yen GG, Sahoo A, Chang L, Gu T (2021) On the estimation of pareto front and dimensional similarity in many-objective evolutionary algorithm. Inf Sci 563:375–400. https://doi.org/10.1016/j.ins.2021.03.008

    MathSciNet  Google Scholar 

  46. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization. In: Evolutionary Multiobjective Optimization, p 105–145. https://doi.org/10.1007/1-84628-137-7_6

  47. Ran Cheng YTXZSYYJXY, Li Miqing (2017) A benchmark test suite for evolutionary many-objective optimization. IEEE Trans Cybern 47:67–81. https://doi.org/10.1007/s40747-017-0039-7

    Google Scholar 

  48. Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506. https://doi.org/10.1109/TEVC.2005.861417

    MATH  Google Scholar 

  49. Tanabe R, Ishibuchi H (2020) An easy-to-use real-world multi-objective optimization problem suite. Appl Soft Comput 89:106078. https://doi.org/10.1016/j.asoc.2020.106078

    Google Scholar 

  50. Tian Y, Cheng R, Zhang X, Jin Y (2017) PlatEMO: A matlab platform for evolutionary multi-objective optimization. IEEE Comput Intell Mag 12(4):73–87. https://doi.org/10.1109/MCI.2017.2742868

    Google Scholar 

  51. Zhu Q, Lin Q, Li J, Coello Coello CA, Ming Z, Chen J, Zhang J (2021) An elite gene guided reproduction operator for many-objective optimization. IEEE Trans Cybern 51(2):765–778. https://doi.org/10.1109/TCYB.2019.2932451

    Google Scholar 

  52. Zou J, Liu J, Yang S, Zheng J (2021) A many-objective evolutionary algorithm based on rotation and decomposition. Swarm Evol Comput 60:100775. https://doi.org/10.1016/j.swevo.2020.100775

    Google Scholar 

  53. Yuan Y, Xu H, Wang B, Zhang B, Yao X (2016) Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans Evol Comput 20(2):180–198. https://doi.org/10.1109/TEVC.2015.2443001

    Google Scholar 

  54. Jain H, Deb K (2014) An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach. IEEE Trans Evol Comput 18(4):602–622. https://doi.org/10.1109/TEVC.2013.2281534

    Google Scholar 

  55. Parsons MG, Scott RL (2004) Formulation of multicriterion design optimization problems for solution with scalar numerical optimization methods. J Ship Res 48(1):61–76. https://doi.org/10.5957/jsr.2004.48.1.61

    Google Scholar 

  56. Ray T, Tai K, Seow KC (2001) Multiobjective design optimization by an evolutionary algorithm. Eng Optim 33(4):399–424. https://doi.org/10.1080/03052150108940926

    Google Scholar 

Download references

Acknowledgments

This research is supported by the Natural Science Foundation of Anhui Province, China (Grant Nos. 1808085MF174 and 1808085QF181), the National Natural Science Foundation of China (Grant No. 61976101), the Key projects of the Natural Science Foundation of Anhui Provincial Department of Education (KJ2019A0603), the Key Research & Development Project of Anhui Province (Grant No. 201904a05020072), the Natural Science Research Project of Anhui Province (Graduate Research Project, Grant No. YJS20210463), the funding plan for scientific research activities of academic and technical leaders and reserve candidates in Anhui Province (Grant No.2021H264), and the Graduate Innovation Fund of Huaibei Normal University (Grant No. yx2021023). We thank Editage (www.editage.cn) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangzhen Ge.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Ge, F., Chen, D. et al. A many-objective evolutionary algorithm based on corner solution and cosine distance. Appl Intell 53, 9321–9343 (2023). https://doi.org/10.1007/s10489-022-03883-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03883-9

Keywords

Navigation