Skip to main content
Log in

Robust semi-supervised data representation and imputation by correntropy based constraint nonnegative matrix factorization

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Many methods have been proposed recently for high-dimensional data representation to reduce the dimensionality of the data. Matrix Factorization (MF) as an efficient dimension-reduction method is increasingly used in a wide range of applications. However, these methods are often unable to handle data with missing entries. In a Semi-Supervised Learning (SSL) scenario, many commonly used missing value imputation methods, e.g., KNN imputation, cannot utilize the existing information on the labels, which is one of the most discriminative information in the data. Considering the outliers in the observed entries, in this paper, we propose an algorithm called Correntropy based Constraint Nonnegative Matrix Factorization Completion (CCNMF) for simultaneous construction of robust representation and imputation of high-dimensional data in an SSL scenario. Specifically, the Maximum Correntropy Criterion (MCC) is used to construct the model of the CCNMF method to alleviate the negative effects of non-Gaussian noise and outliers in the data. To solve the optimization problem, an iterative algorithm based on a Fenchel Conjugate (FC) and Block Coordinate Update (BCU) framework is proposed. We show that the proposed algorithm can satisfy not only objective sequential convergence but also iterate sequence convergence. The experiments are conducted on the real-world image dataset and community health dataset. In many cases, it is shown that the proposed method outperforms several state-of-the-art methods for both representation and imputation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The Orl and Yale datasets are publicly available. The community health data is available from the corresponding author, Kup-Sze Choi, upon reasonable request.

References

  1. Kriegel H-P, Kröger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data (tkdd) 3(1):1–58

    Google Scholar 

  2. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Google Scholar 

  3. Ding C, He X (2004) K-means clustering and principal component analysis. In: International conf. machine learning

  4. Wang C, Zhang J, Wu T, Zhang M, Shi G (2022) Semi-supervised nonnegative matrix factorization with positive and negative label propagations. Appl Intell:1–12

  5. Cai D, He X, Han J, Huang TS (2010) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548–1560

    Google Scholar 

  6. Meng Y, Shang R, Jiao L, Zhang W, Yang S (2018) Dual-graph regularized non-negative matrix factorization with sparse and orthogonal constraints. Eng Appl Artif Intell 69:24–35

    Google Scholar 

  7. Peng S, Ser W, Chen B, Lin Z (2021) Robust semi-supervised nonnegative matrix factorization for image clustering. Pattern Recognition 111:107683

    Google Scholar 

  8. Cai D, Zhang C, He X (2010) Unsupervised feature selection for multi-cluster data. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, pp 333–342

  9. Gu Q, Li Z, Han J (2011) Joint feature selection and subspace learning

  10. Wang S, Pedrycz W, Zhu Q, Zhu W (2015) Subspace learning for unsupervised feature selection via matrix factorization. Pattern Recogn 48(1):10–19

    MATH  Google Scholar 

  11. Zhou N, Xu Y, Cheng H, Fang J, Pedrycz W (2016) Global and local structure preserving sparse subspace learning: an iterative approach to unsupervised feature selection. Pattern Recogn 53:87–101

    MATH  Google Scholar 

  12. Zhang Y, Zhang Q, Chen Z, Shang J, Wei H (2019) Feature assessment and ranking for classification with nonlinear sparse representation and approximate dependence analysis. Decis Support Syst 122:113064

    Google Scholar 

  13. Little RJ, Rubin DB (2019) Statistical analysis with missing data. Wiley, Vol 793

  14. García-Laencina PJ, Sancho-Gómez J-L , Figueiras-Vidal AR (2010) Pattern classification with missing data: a review. Neural Comput Applic 19(2):263–282

    Google Scholar 

  15. Luo X, Zhou M, Li S, Hu L, Shang M (2019) Non-negativity constrained missing data estimation for high-dimensional and sparse matrices from industrial applications. IEEE Trans Cybernetics 50 (5):1844–1855

    Google Scholar 

  16. Schafer JL (1997) Analysis of incomplete multivariate data. CRC Press

  17. Schneider T (2001) Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J Climate 14(5):853–871

    Google Scholar 

  18. Gold MS, Bentler PM (2000) Treatments of missing data: a Monte Carlo comparison of rbhdi, iterative stochastic regression imputation, and expectation-maximization. Struct Equ Modeling 7(3):319–355

    Google Scholar 

  19. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB (2001) Missing value estimation methods for dna microarrays. Bioinformatics 17(6):520–525

    Google Scholar 

  20. Aydilek IB, Arslan A (2012) A novel hybrid approach to estimating missing values in databases using k-nearest neighbors and neural networks, International Journal of Innovative Computing. Inf Control 7(8):4705–4717

    Google Scholar 

  21. Silva-Ramírez E-L, Pino-Mejías R, López-Coello M, Cubiles-de-la Vega M-D (2011) Missing value imputation on missing completely at random data using multilayer perceptrons. Neural Netw 24 (1):121–129

    Google Scholar 

  22. Fessant F, Midenet S (2002) Self-organising map for data imputation and correction in surveys. Neural Comput Appl 10(4):300–310

    MATH  Google Scholar 

  23. Rahman MG, Islam MZ (2013) Missing value imputation using decision trees and decision forests by splitting and merging records: Two novel techniques. Knowl-Based Syst 53:51–65

    Google Scholar 

  24. Wang G, Deng Z, Choi K-S (2018) Tackling missing data in community health studies using additive ls-svm classifier. IEEE J Biomed Health Inform 22(2):579–587

    Google Scholar 

  25. Batista GE, Monard MC, et al. (2002) A study of k-nearest neighbour as an imputation method. His 87(48):251– 260

    Google Scholar 

  26. Candès EJ, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9(6):717

    MathSciNet  MATH  Google Scholar 

  27. Xu Y, Yin W, Wen Z, Zhang Y (2012) An alternating direction algorithm for matrix completion with nonnegative factors. Front Math China 7(2):365–384

    MathSciNet  MATH  Google Scholar 

  28. Chen B, Wang J, Zhao H, Zheng N, Príncipe JC (2015) Convergence of a fixed-point algorithm under maximum correntropy criterion. IEEE Signal Process Lett 22(10):1723–1727

    Google Scholar 

  29. Chen B, Xing L, Zhao H, Zheng N, Príncipe JC (2016) Generalized correntropy for robust adaptive filtering. Trans Signal Process 64(13):3376–3387

    MathSciNet  MATH  Google Scholar 

  30. He Y, Wang F, Li Y, Qin J, Chen B (2019) Robust matrix completion via maximum correntropy criterion and half-quadratic optimization. IEEE Trans Signal Process 68:181–195

    MathSciNet  MATH  Google Scholar 

  31. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788

    MATH  Google Scholar 

  32. Kim H, Park H (2007) Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 23(12):1495–1502

    Google Scholar 

  33. Carmona-Saez P, Pascual-Marqui RD, Tirado F, Carazo JM, Pascual-Montano A (2006) Biclustering of gene expression data by non-smooth non-negative matrix factorization. BMC Bioinformatics 7(1):78

    Google Scholar 

  34. Xu W, Liu X, Gong Y (2003) Document clustering based on non-negative matrix factorization. In: Proceedings of the 26th annual international ACM SIGIR conference on research and development in informaion retrieval, pp 267–273

  35. Liu H, Wu Z, Li X, Cai D, Huang TS (2011) Constrained nonnegative matrix factorization for image representation. IEEE Trans Pattern Anal Mach Intell 34(7):1299–1311

    Google Scholar 

  36. Xu Y, Yin W (2013) A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J Imaging Sci 6(3):1758–1789

    MathSciNet  MATH  Google Scholar 

  37. Rockafellar RT (2015) Convex analysis Princeton University Press

  38. Cai D, He X, Wu X, Han J (2008) Non-negative matrix factorization on manifold. In: Eighth IEEE international conference on data mining, pp 63–72

  39. Cai D, He X, Han J, Huang TS (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548–1560

    Google Scholar 

  40. Liu H, Yang G, Wu Z, Cai D (2014) Constrained concept factorization for image representation. IEEE Trans Cybern 44(7):1214

    Google Scholar 

  41. Guo Y, Ding G, Zhou J, Liu Q (2015) Robust and discriminative concept factorization for image representation:115–122

  42. Zhang Z, Zhao K (2012) Low-rank matrix approximation with manifold regularization. IEEE Trans Pattern Anal Mach Intell 35(7):1717–1729

    MathSciNet  Google Scholar 

  43. Cai D, He X, Han J (2011) Locally consistent concept factorization for document clustering. IEEE Trans Knowl Data Eng 23(6):902–913

    Google Scholar 

  44. He R, Hu B-G, Zheng W-S, Kong X-W (2011) Robust principal component analysis based on maximum correntropy criterion. Trans Image Process 20(6):1485–1494

    MathSciNet  MATH  Google Scholar 

  45. Folstein MF, Folstein SE, McHugh PR (1975) “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatry Res 12(3):189–198

    Google Scholar 

  46. Cleeland C, Ryan K (1994) Pain assessment: global use of the brief pain inventory. Ann Acad Med Singapore

  47. Yesavage JA (1988) Geriatric depression scale. Psychopharmacol Bull 24(4):709–711

    Google Scholar 

  48. Smith R (1994) Validation and reliability of the elderly mobility scale. Physiotherapy 80 (11):744–747

    Google Scholar 

  49. Guigoz Y, Vellas B, Garry P (1997) Mini nutritional assessment: a practical assessment tool for grading the nutritional state of elderly patients. Facts Res Intervention Geriatr:15–60

  50. Chan A, Lam K, Hui W, Hu W, Li J, Lai K, Chan C, Yuen M, Lam S, Wong B (2005) Validated questionnaire on diagnosis and symptom severity for functional constipation in the chinese population. Aliment Pharmacol Ther 22(5):483–488

    Google Scholar 

  51. Roper N, Logan WW, Tierney AJ (2000) The Roper-Logan-Tierney model of nursing: based on activities of living. Elsevier Health Sciences

  52. Shen X, Wang G, Kwan R. Y -C, Choi K. -S. (2020) Using dual neural network architecture to detect the risk of dementia with community health data: algorithm development and validation study. JMIR Medical Informatics 8(8):e19870

    Google Scholar 

  53. Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Google Scholar 

  54. Fawcett T (2006) An introduction to roc analysis. Pattern Recognit Lett 27(8):861–874

    MathSciNet  Google Scholar 

  55. Jeni LA, Cohn JF, De La Torre F (2013) Facing imbalanced data–recommendations for the use of performance metrics. In: 2013 humaine association conference on affective computing and intelligent interaction. IEEE, pp 245–251

Download references

Acknowledgements

This work was made possible by support from the National Natural Science Foundation of China (No. 11901063), National Key R&D Program of China (No. 2021ZD0112701), the Innovation and Technology Fund of Hong Kong (No. MRP/015/18), the General Research Fund of the Hong Kong Research Grants Council (No. PolyU 152006/19E), and the Scientific Research Fund of the Sichuan Provincial Science and Technology Department (Nos. 2022NSFSC0462, 2021YFG0133, 2021YFG0295, 21ZDYF3598 and 2021YFH0069).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan Zhou, Yuanhua Du or Kup-Sze Choi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: A. Proof Of Theorem 1

Proof

The problem in (19) can be decomposed into n × d independent problems, each involving one element in B and coming in the form

$$ \min\limits_{{\mathcal{P}}_{\Omega}({\mathbf{B}})={\mathcal{P}}_{\Omega}({\mathbf{A}})} \frac{1}{2}{\mathbf{C}}^{2}_{i,j}({\mathbf{B}}_{i,j}-{\mathbf{D}}_{i,j})^{2},\quad \forall i,j. $$
(A.1)

If i,j ∈Ω, due to the constraint \({\mathcal {P}}_{\Omega }({\mathbf {B}})={\mathcal {P}}_{\Omega }({\mathbf {A}})\), \({\mathbf {B}}^{*}_{i,j}\) needs to equal Ai,j. If i,j∉Ω, the problem (A.1) can be written as

$$ \min\limits_{{\mathbf{B}}_{i,j}} \frac{1}{2}{\mathbf{C}}^{2}_{i,j}({\mathbf{B}}_{i,j}-{\mathbf{D}}_{i,j})^{2},\quad \forall i,j, $$
(A.2)

which is a conventional quadratic function, with optimal solution as \({\mathbf {B}}^{*}_{i,j}=D_{i,j}\). Therefore, (20) is optimal solution of (19). □

Appendix: B. The Equivalence of (12c) and (15)

Let \({\mathbf {C}} = \nabla _{{\mathbf {X}}} f(\hat {{\mathbf {X}}}^{t},{\mathbf {Z}}^{t},{\mathbf {P}}^{t+1},{\mathbf {B}}^{t})\) and \(L = L_{{\mathbf {X}}}^{t}\), the objective of (12c) can be written as

$$ \begin{array}{@{}rcl@{}} &&\text{Tr}[({\mathbf{X}}-\hat{\mathbf{X}}^{t})]-{\frac{L}{2}}\text{Tr}[({\mathbf{X}}-\hat{\mathbf{X}}^{t})]\\ &=&\text{Tr}[\mathbf{X}^{\top}\mathbf{C}-(\hat{\mathbf{X}}^{t})^{\top}]\\&&-{\frac{L}{2}}\text{Tr}[\mathbf{X}^{\top}\mathbf{X}-2{\mathbf{X}}^{\top}\hat{\mathbf{X}}^{t}+(\hat{\mathbf{X}}^{t})^{\top}\hat{\mathbf{X}}^{t}] \end{array} $$
(B.1)

Eliminating the terms which are independent of X in (B.1), (12c) can be reformulated as follows:

$$ \begin{array}{l} \quad\underset{{\mathbf{X}}\geq 0}{\arg\max} \text{Tr}\left( {\mathbf{X}}^{\top}{\mathbf{C}}-{\frac{L}{2}}{\mathbf{X}}^{\top}{\mathbf{X}} + L {\mathbf{X}}^{\top}\hat{\mathbf{X}}^{t}\right)\\ \Leftrightarrow\underset{{\mathbf{X}}\geq 0}{\arg}{\max} -\frac{L}{2} \text{Tr}\left( {\mathbf{X}}^{\top} {\mathbf{X}}-\frac{2}{L}{\mathbf{X}}^{\top} {\mathbf{C}}+2{\mathbf{X}}^{\top} \hat{{\mathbf{X}}}^{t}\right)\\ \Leftrightarrow\underset{{\mathbf{X}}\geq 0}{\arg}{\min} \text{Tr}\left( {\mathbf{X}}^{\top} {\mathbf{X}}-\frac{2}{L}{\mathbf{X}}^{\top} {\mathbf{C}}+2{\mathbf{X}}^{\top} \hat{\mathbf{X}}^{t}\right)\\ \Leftrightarrow\underset{{\mathbf{X}}\geq 0}{\arg}{\min} \text{Tr}\left( {\mathbf{X}}^{\top} {\mathbf{X}}-2{\mathbf{X}}^{\top} (\hat{{\mathbf{X}}}^{t}+\frac{1}{L}{\mathbf{C}})\right). \end{array} $$

Finally, (12c) can be reformulated as:

$$ \underset{{\mathbf{X}}\geq 0}{\arg}{\min} \frac{1}{2}\|\mathbf{X}-\left( \hat{\mathbf{X}}^{t}+\frac{1}{L}{\mathbf{C}}\right)\|_{F}^{2}, $$

which is the formulation of (15).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, N., Du, Y., Liu, J. et al. Robust semi-supervised data representation and imputation by correntropy based constraint nonnegative matrix factorization. Appl Intell 53, 11599–11617 (2023). https://doi.org/10.1007/s10489-022-03884-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03884-8

Keywords

Navigation