Skip to main content

Advertisement

Log in

Neural network temporal quantized lagrange dynamics with cycloidal trajectory for a toe-foot bipedal robot to climb stairs

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

A novel technique for joint angles trajectory tracking control with energy optimization is proposed for a biped robot with toe foot. For the task of climbing stairs by a 9-link biped model, an adaptive cycloid trajectory for the swing phase is planned as a function of the staircase rise/run ratio. We consider Zero Moment Point criteria for satisfying stability constraints. The paper is primarily divided into three sections: 1) Planning stable cycloid trajectory for the initial step and subsequent steps for climbing upstairs. We incorporate inverse kinematics using an unsupervised artificial neural network with a knot shifting procedure for jerk minimization. 2) Developing dynamics for toe-foot biped model using Lagrange formulation along with contact modeling using the spring-damper system. We propose Neural Network Temporal Quantized Lagrange Dynamics, which couples inverse kinematics neural network with dynamics. 3) Using Ant Colony Optimization to tune Proportional-Derivative controller and torso angle in order to minimize joint trajectory errors and total energy consumed. Three cases with variable staircase dimensions have been taken, and a comparison is made to validate the effectiveness of the proposed work. Generated patterns have been simulated in Ⓒ Matlab and MuJoCo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Mu X, Wu Q (2004) Sagittal gait synthesis for a five-link biped robot. In: Proceedings of the 2004 American control conference, vol 5. https://doi.org/10.23919/ACC.2004.1383934, pp 4004–4009

  2. Moosavian S A A, Alghooneh M, Takhmar A (2007) Stable trajectory planning, dynamics modeling and fuzzy regulated sliding mode control of a biped robot. In: 2007 7th IEEE-RAS international conference on humanoid robots. https://doi.org/10.1109/ICHR.2007.4813912, pp 471–476

  3. Hereid A, Hubicki C M, Cousineau E A, Ames A D (2018) Dynamic humanoid locomotion: a scalable formulation for HZD gait optimization. IEEE Trans Robot 34(2):370–387. https://doi.org/10.1109/TRO.2017.2783371

    Article  Google Scholar 

  4. Seleem I A, Assal S F M (2017) Sliding mode control of underactuated five-link biped robot for climbing stairs based on real human data. In: 2017 IEEE international conference on industrial technology (ICIT). https://doi.org/10.1109/ICIT.2017.7915475, pp 878–883

  5. Khadiv M, Herzog A, Moosavian S A A, Righetti L (2020) Walking control based on step timing adaptation. IEEE Trans Robot 36(3):629–643. https://doi.org/10.1109/TRO.2020.2982584

    Article  Google Scholar 

  6. Puspita Sari W, Sanggar Dewanto R, Pramadihanto D (2020) Implementation and integration of fuzzy algorithms for descending stair of KMEI humanoid robot. EMITTER Int J Eng Technol 8(2):372–388. https://doi.org/10.24003/emitter.v8i2.535

    Article  Google Scholar 

  7. Sarkar A, Dutta A (2019) Optimal trajectory generation and design of an 8-DoF compliant biped robot for walk on inclined ground. J Intell Robot Syst 94:583–602. https://doi.org/10.1007/s10846-018-0882-9

    Article  Google Scholar 

  8. Kljuno E, Williams R L (2010) Humanoid walking robot: modeling, inverse dynamics, and gain scheduling control. J Robot. https://doi.org/10.1155/2010/278597

  9. Zhao Y, Fernandez B R, Sentis L (2017) Robust optimal planning and control of non-periodic bipedal locomotion with a centroidal momentum model. Int J Robot Res 36(11):1211–1242. https://doi.org/10.1177/0278364917730602

    Article  Google Scholar 

  10. Apgar T, Clary P, Green K, Fern A, Hurst J W (2018, June) Fast online trajectory optimization for the bipedal robot cassie. Robot: Sci Syst 101:14. https://doi.org/10.15607/RSS.2018.XIV.054

    Google Scholar 

  11. Ito S, Nishio S, Fukumoto Y, Matsushita K, Sasaki M (2017) Gravity compensation and feedback of ground reaction forces for biped balance control. Appl Bionics Biomech. https://doi.org/10.1155/2017/5980275

  12. Righetti L, Buchli J, Mistry M, Schaal S (2010) Inverse dynamics with optimal distribution of ground reaction forces for legged robots. Emerging Trends in Mobile Robotics, pp 580–587. https://doi.org/10.1142/9789814329927_0072

  13. Gong Y et al (2019) Feedback control of a Cassie bipedal robot: walking, standing, and riding a segway. In: 2019 American control conference (ACC). https://doi.org/10.23919/ACC.2019.8814833, pp 4559–4566

  14. Castillo GA, Weng B, Zhang W, Hereid A (2020) Hybrid zero dynamics inspired feedback control policy design for 3D bipedal locomotion using reinforcement learning. In: 2020 IEEE international conference on robotics and automation (ICRA). https://doi.org/10.1109/ICRA40945.2020.9197175, pp 8746–8752

  15. Gazar A, Khadiv M, Prete A D, Righetti L (2021) Stochastic and robust MPC for bipedal locomotion: a comparative study on robustness and performance. In: 2020 IEEE-RAS 20th international conference on humanoid robots (humanoids). https://doi.org/10.1109/HUMANOIDS47582.2021.9555783, pp 61–68

  16. Li J, Nguyen Q (2021) Force-and-moment-based model predictive control for achieving highly dynamic locomotion on bipedal robots. arXiv:2104.00065

  17. Brasseur C, Sherikov A, Collette C, Dimitrov D, Wieber P (2015) A robust linear MPC approach to online generation of 3D biped walking motion. In: 2015 IEEE-RAS 15th international conference on humanoid robots (humanoids). https://doi.org/10.1109/HUMANOIDS.2015.7363423, pp 595–601

  18. Rocchi A, Hoffman E M, Caldwell D G, Tsagarakis N G (2015) Opensot: a whole-body control library for the compliant humanoid robot COMAN. In: 2015 IEEE international conference on robotics and automation (ICRA). https://doi.org/10.1109/ICRA.2015.7140076, pp 6248–6253

  19. Khan A T, Li S, Zhou X (2021) Trajectory optimization of 5-Link biped robot using beetle antennae search. IEEE Trans Circ Syst II: Express Briefs 68(10):3276–3280. https://doi.org/10.1109/TCSII.2021.3062639

    Google Scholar 

  20. Kashyap AK, Parhi DR (2021) Particle swarm optimization aided PID gait controller design for a humanoid robot. ISA Trans 114:306–330. https://doi.org/10.1016/j.isatra.2020.12.033. ISSN 0019-0578

    Article  Google Scholar 

  21. Wang H, Zhang H, Wang Z, Chen Q (2020) Impulsive control and stability analysis of biped robot based on virtual constraint and adaptive optimization. Adv Control Appl: Eng Ind Syst 2:e32. https://doi.org/10.1002/adc2.32

    Article  Google Scholar 

  22. Huang Q, Yokoi K, Kajita S, Kaneko K (2001) Planning walking patterns for a biped robot. IEEE Trans Robot Autom 17(3):280–289

    Article  Google Scholar 

  23. Kajita S, Kanehiro F, Kaneko K, Fujiwara K (2003) Biped walking pattern generation by using preview control of zero-moment point. In: Proceedings of IEEE international conference on robotics and automation, Taipai, Taiwan

  24. Zhou C, Meng Q (2003) Dynamic balance of a biped robot using fuzzy reinforcement learning agents. J Fuzzy Sets Syst 134(1):169–187

    Article  MathSciNet  MATH  Google Scholar 

  25. Kim J Y, park I W, Oh J H (2009) Realization of dynamic stair climbing for biped humanoid robot using force/torque sensors. J Intell Robot Syst 56(4):389–423

    Article  MATH  Google Scholar 

  26. Park C S, ha T, Kim J, Choi C H (2010) Trajectory generation and control for a biped robot walking upstairs. Int J Control Autom Syst 8(2):339–351

    Article  Google Scholar 

  27. Kwona O, Jeon K S (2006) Optimal trajectory generation for biped robots walking up-and-down stairs. J Mech Sci Technol (KSME Int J) 20(5):612–620

    Article  Google Scholar 

  28. Shih C L, Chiou C J (1998) The motion control of a statically stable biped robot on an uneven floor. IEEE Trans Syst Man Cybern Part B: Cybern 28(2):244–249

    Article  Google Scholar 

  29. Jeon K S, Kwon O, Park JH (2004) Optimal trajectory generation for a biped robot walking a staircase based on genetic algorithms. In: 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS), vol 3(1). https://doi.org/10.1109/iros.2004.1389839, pp 2837–2842

  30. Morisawa M, Kajita S, Kaneko K, Harada K, Kanehiro F, Fujiwara K, Hirukawa H (2005) Pattern generation of biped walking constrained on parametric surface. In: Proceedings - IEEE International Conference on Robotics and Automation. https://doi.org/10.1109/ROBOT.2005.1570473, pp 2405–2410

  31. Sato T, Sakaino S, Ohashi E, Ohnishi K (2011) Walking trajectory planning on stairs using virtual slope for biped robots. IEEE Trans Ind Electron 58(4):1385–1396. https://doi.org/10.1109/TIE.2010.2050753

    Article  Google Scholar 

  32. Gutmann J S, Fukuchi M, Fujita M (2004) Stair climbing for humanoid robots using stereo vision. In: 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS). https://doi.org/10.1109/iros.2004.1389593

  33. De Lope J, Gonzalez-Careaga R, Zarraonandia T, Maravall D (2004) Inverse kinematics for humanoid robots using artificial neural networks. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 2809. https://doi.org/10.1007/978-3-540-45210-241, pp 448–459

  34. Husty M L, Pfurner M, Schrocker HP (2007) A new and efficient algorithm for the inverse kinematics of a general serial 6R manipulator. Mech Mach Theory 42(1):66–81. https://doi.org/10.1016/j.mechmachtheory.2006.02.001

    Article  MathSciNet  MATH  Google Scholar 

  35. Almusawi A R J, Dulger L C, Kapucu S (2016) A new artificial neural network approach in solving inverse kinematics of robotic arm (Denso VP6242). In: Computational intelligence and neuroscience, 2016. https://doi.org/10.1155/2016/5720163

  36. Duka A -V (2014) Neural network-based inverse kinematics solution for trajectory tracking of a robotic arm. Procedia Technol 12:20–27. https://doi.org/10.1016/j.protcy.2013.12.451

    Article  Google Scholar 

  37. Chen S, Mulgrew B, Grant PM (1993) A clustering technique for digital communications channel equalization using radial basis function networks. IEEE Trans Neural Netw 4(4):570–590. https://doi.org/10.1109/72.238312

    Article  Google Scholar 

  38. Takanishi A, Ishida M, Yamazaki Y, Kato I (1985) Realization of dynamic walking by the biped walking robot WL-10RD

  39. Panwar R, Sukavanam N (2018) Trajectory tracking using an artificial neural network for stable human-like gait with upper body motion. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3842-1

  40. Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Yokoi K, Hirukawa H (2003) Biped walking pattern generation by a simple three-dimensional inverted pendulum model. Adv Robot. https://doi.org/10.1163/156855303321165097

  41. Kuo A D, Donelan J M, Ruina A (2005) Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exercise and Sport Sciences Reviews. https://doi.org/10.1097/00003677-200504000-00006

  42. Kajita S, Kanehiro F, Kaneko K, Yokoi K, Hirukawa H (2001) The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. In: IEEE International conference on intelligent robots and systems. https://doi.org/10.1109/iros.2001.973365

  43. Rostami M, Bessonnet G (2001) Sagittal gait of a biped robot during the single support phase. Part 2: optimal motion. Robotica 19(3):241–253. https://doi.org/10.1017/S0263574700003039

    Article  Google Scholar 

  44. Vukobratovic M (1972) Contribution to the study of anthropomorphic systems. Kybernetika 8 (5):404–418

    MATH  Google Scholar 

  45. Irvine C H, Snook S H, Sparshatt J H (1990) Stairway risers and treads: acceptable and preferred dimensions. Appl Ergon 21(3):215–225. https://doi.org/10.1016/0003-6870(90)90005-I. ISSN 0003-6870

    Article  Google Scholar 

  46. Kajita S, Benallegue M, Cisneros R, Sakaguchi T, Nakaoka S, Morisawa M, Kaneko K, Kanehiro F (2017) Biped walking pattern generation based on spatially quantized dynamics. In: IEEE-RAS international conference on humanoid robots. https://doi.org/10.1109/HUMANOIDS.2017.8246933

  47. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B (Cybern) 26(1):29–41

    Article  Google Scholar 

  48. Dorigo M (2007) Ant colony optimization. Scholarpedia 2(3):1461

    Article  MathSciNet  Google Scholar 

  49. Blondin M-J, Sicard P (2013) ACO based controller and anti-windup tuning for motion systems with flexible transmission. In: 2013 26th IEEE Canadian conference on electrical and computer engineering (CCECE). IEEE

  50. Kashyap AK, Parhi DR (2021) Optimization of stability of humanoid robot NAO using ant colony optimization tuned MPC controller for uneven path. Soft Comput 25(7):5131–5150

    Article  MATH  Google Scholar 

  51. Bhardwaj G et al (2021) Planning adaptive brachistochrone and circular arc hip trajectory for a toe-foot bipedal robot going downstairs. J Phys: Conf Ser 1831(1):1. IOP Publishing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Bhardwaj.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Funded by Council of Scientific and Industrial Research (CSIR), New Delhi under Grant No- 09/143(0903)/2017-EMR-I.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, G., Mishra, U.A., Sukavanam, N. et al. Neural network temporal quantized lagrange dynamics with cycloidal trajectory for a toe-foot bipedal robot to climb stairs. Appl Intell 53, 10995–11018 (2023). https://doi.org/10.1007/s10489-022-03921-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03921-6

Keywords