Skip to main content

Advertisement

Log in

Hybrid whale optimization algorithm based on symbiosis strategy for global optimization

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The whale optimization algorithm (WOA) is a simple structured and easily implemented swarm-based algorithm inspired by the unique bubble-net feeding method of humpback whales. Past studies have shown that WOA performs well in a number of optimization problems. However, it is difficult for WOA to completely free itself from the problems of insufficient convergence accuracy and premature convergence when solving global optimization problems. To address these issues, a hybrid whale optimization algorithm based on symbiotic strategy (HWOAMS) is proposed in this paper. The main idea of the proposed method is to combine the improved symbiotic organisms search algorithm (SOS) with the whale optimization algorithm thus enhancing the search ability of WOA. First, an improved symbiotic phase based on Lévy flight and chaos strategy is introduced into the exploration process to enhance the global search capability; Second, an improved mutualism phase based on Brownian motion is used instead of the original shrinking encircling phase to achieve better local exploitation. Third, an improved parasitic phase based on a modified global optimal spiral operator strategy is embedded in the spiral updating position phase to help the algorithm further improve the exploitation efficiency and convergence accuracy. Finally, a global search strategy is proposed to help the algorithm better balance exploration and exploitation. To establish the effectiveness of the new algorithm, extensive simulation experiments are conducted on HWOAMS using the classical function test set, the CEC 2019 function set and four classical engineering problems. Numerical evaluation results indicate that HWOAMS outperforms 18 other algorithms in terms of local optimum avoidance ability and convergence accuracy in a majority of cases, and has better search performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Algorithm 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kirkpatrick S, Gelatt Jr CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  2. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  3. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  Google Scholar 

  4. Formato R (2007) Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog Electromagn Res 77:425–491

    Article  Google Scholar 

  5. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl-Based Syst 105190:191

    Google Scholar 

  6. Holland JH (1973) Genetic algorithms and the optimal allocation of trials. SIAM J Comput 2 (2):88–105

    Article  MathSciNet  MATH  Google Scholar 

  7. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  8. Rechenberg I (1978) Evolutionsstrategien, 83–114

  9. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4. IEEE, pp 1942–1948

  10. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  11. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  12. Yang X-S (2013) Multiobjective firefly algorithm for continuous optimization. Eng Comput 29 (2):175–184

    Article  Google Scholar 

  13. Yang X-S, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29:464–483

    Article  Google Scholar 

  14. Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152:113377

    Article  Google Scholar 

  15. Rao RV, Savsani VJ, Vakharia D (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

  16. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  17. Ghasemi M, Bagherifard K, Parvin H, Nejatian S, Pho K-H (2021) Multi-objective whale optimization algorithm and multi-objective grey wolf optimizer for solving next release problem with developing fairness and uncertainty quality indicators. Appl Intell 51(8):5358–5387

    Article  Google Scholar 

  18. Li Y, He Y, Liu X, Guo X, Li Z (2020) A novel discrete whale optimization algorithm for solving knapsack problems. Appl Intell 50(10):3350–3366

    Article  Google Scholar 

  19. Zhang Y, Li H-G, Wang Q, Peng C (2019) A filter-based bare-bone particle swarm optimization algorithm for unsupervised feature selection. Appl Intell 49(8):2889–2898

    Article  Google Scholar 

  20. Ji X, Zhang Y, Gong D, Sun X, Guo Y (2021) Multisurrogate-assisted multitasking particle swarm optimization for expensive multimodal problems. IEEE Trans Cybernet

  21. Chen H, Li W, Yang X (2020) A whale optimization algorithm with chaos mechanism based on quasi-opposition for global optimization problems. Expert Syst Appl 158:113612

    Article  Google Scholar 

  22. Ling Y, Zhou Y, Luo Q (2017) Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access 5:6168–6186

    Article  Google Scholar 

  23. Sun Y, Yang T, Liu Z (2019) A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems. Appl Soft Comput 85:105744

    Article  Google Scholar 

  24. Long W, Wu T, Jiao J, Tang M, Xu M (2020) Refraction-learning-based whale optimization algorithm for high-dimensional problems and parameter estimation of pv model. Eng Appl Artif Intell 89:103457

    Article  Google Scholar 

  25. Jiang R, Yang M, Wang S, Chao T (2020) An improved whale optimization algorithm with armed force program and strategic adjustment. Appl Math Model 81:603–623

    Article  MathSciNet  MATH  Google Scholar 

  26. Chou J-S, Nguyen N-M (2020) Fbi inspired meta-optimization. Appl Soft Comput 93:106339

    Article  Google Scholar 

  27. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  28. Luo J, Shi B (2019) A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems. Appl Intell 49(5):1982–2000

    Article  Google Scholar 

  29. Singh N, Singh S (2017) Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance. J Appl Math 2017:1–15

    Article  MathSciNet  MATH  Google Scholar 

  30. Korashy A, Kamel S, Jurado F, Youssef A-R (2019) Hybrid whale optimization algorithm and grey wolf optimizer algorithm for optimal coordination of direction overcurrent relays. Electr Power Components Syst 47(6-7):644–658

    Article  Google Scholar 

  31. Chakraborty S, Saha AK, Sharma S, Chakraborty R, Debnath S (2021) A hybrid whale optimization algorithm for global optimization. Journal of Ambient Intelligence and Humanized Computing :1–37

  32. Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112

    Article  Google Scholar 

  33. Saafan MM, El-Gendy EM (2021) Iwossa: an improved whale optimization salp swarm algorithm for solving optimization problems. Expert Syst Appl 176:114901

    Article  Google Scholar 

  34. Mantegna RN (1994) Fast, accurate algorithm for numerical simulation of levy stable stochastic processes. Phys Rev E 49(5):4677

    Article  Google Scholar 

  35. Einstein A (1956) Investigations on the theory of the brownian movement. Dover Publications, Inc., New York

    MATH  Google Scholar 

  36. Yu Y, Gao S, Cheng S, Wang Y, Song S, Yuan F (2018) Cbso: a memetic brain storm optimization with chaotic local search. Memet Comput 10(4):353–367

    Article  Google Scholar 

  37. Gao S, Yu Y, Wang Y, Wang J, Cheng J, Zhou M (2019) Chaotic local search-based differential evolution algorithms for optimization. IEEE Trans Syst Man Cybernet Syst 51(6):3954–3967

    Article  Google Scholar 

  38. Yang L, Gao S, Yang H, Cai Z, Lei Z, Todo Y (2021) Adaptive chaotic spherical evolution algorithm. Memet Comput 13(3):383–411

    Article  Google Scholar 

  39. Xu Z, Yang H, Li J, Zhang X, Lu B, Gao S (2021) Comparative study on single and multiple chaotic maps incorporated grey wolf optimization algorithms. IEEE Access 9:77416–77437

    Article  Google Scholar 

  40. Xu Z, Gao S, Yang H, Lei Z (2021) Scjade: Yet another state-of-the-art differential evolution algorithm. IEEJ Trans Electr Electron Eng 16(4):644–646

    Article  Google Scholar 

  41. Song Z, Gao S, Yu Y, Sun J, Todo Y (2017) Multiple chaos embedded gravitational search algorithm. IEICE Trans Inf Syst 100(4):888–900

    Article  Google Scholar 

  42. Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06), vol 1. IEEE, pp 695–701

  43. Omran MG, Mahdavi M (2008) Global-best harmony search. Appl Math Comput 198 (2):643–656

    MathSciNet  MATH  Google Scholar 

  44. Molga M, Smutnicki C (2005) Test functions for optimization needs. Test Funct Optim Needs 101:48

    Google Scholar 

  45. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. arXiv:1003.1409

  46. Chakraborty S, Saha AK, Chakraborty R, Saha M (2021) An enhanced whale optimization algorithm for large scale optimization problems. Knowl-Based Syst 233:107543

    Article  Google Scholar 

  47. Li M, Xu G, Lai Q, Chen J (2022) A chaotic strategy-based quadratic opposition-based learning adaptive variable-speed whale optimization algorithm. Math Comput Simul 193:71–99

    Article  MathSciNet  MATH  Google Scholar 

  48. Long W, Jiao J, Liang X, Tang M (2018) An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Eng Appl Artif Intell 68:63–80

    Article  Google Scholar 

  49. Jensi R, Jiji GW (2016) An enhanced particle swarm optimization with levy flight for global optimization. Appl Soft Comput 43:248–261

    Article  Google Scholar 

  50. Fan Q, Chen Z, Zhang W, Fang X (2020) Essawoa: enhanced whale optimization algorithm integrated with salp swarm algorithm for global optimization. Eng Comput 38:797–814

    Article  Google Scholar 

  51. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  52. Yan F, Xu X, Xu J (2020) Grey wolf optimizer with a novel weighted distance for global optimization. IEEE Access 8:120173–120197

    Article  Google Scholar 

  53. Long W, Wu T, Liang X, Xu S (2019) Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Syst Appl 123:108–126

    Article  Google Scholar 

  54. Tanabe R, Fukunaga AS (2014) Improving the search performance of shade using linear population size reduction. In: 2014 IEEE congress on evolutionary computation (CEC), IEEE, pp 1658–1665

  55. Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  56. Yang Y, Chen H, Heidari AA, Gandomi AH (2021) Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst Appl 177:114864

    Article  Google Scholar 

  57. Alsattar HA, Zaidan A, Zaidan B (2020) Novel meta-heuristic bald eagle search optimisation algorithm. Artif Intell Rev 53(3):2237–2264

    Article  Google Scholar 

  58. García-Martínez C, Gutiérrez PD, Molina D, Lozano M, Herrera F (2017) Since cec 2005 competition on real-parameter optimisation: a decade of research, progress and comparative analysis’s weakness. Soft Comput 21(19):5573–5583

    Article  Google Scholar 

  59. Lei Z, Gao S, Gupta S, Cheng J, Yang G (2020) An aggregative learning gravitational search algorithm with self-adaptive gravitational constants. Expert Syst Appl 152:113396

    Article  Google Scholar 

  60. Zhang X, Wen S (2021) Hybrid whale optimization algorithm with gathering strategies for high-dimensional problems. Expert Syst Appl 179:115032

    Article  Google Scholar 

  61. Piotrowski AP, Napiorkowski JJ (2018) Some metaheuristics should be simplified. Inf Sci 427:32–62

    Article  MathSciNet  Google Scholar 

  62. Wilcoxon F (1992) Individual comparisons by ranking methods. In: Kotz S, Johnson NL (eds) Breakthroughs in statistics. Springer series in statistics. Springer, New York

  63. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Article  Google Scholar 

  64. Coello Coello CA (2000) Constraint-handling using an evolutionary multiobjective optimization technique. Civ Eng Syst 17(4):319–346

    Article  Google Scholar 

  65. Ray T, Liew K-M (2003) Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7(4):386–396

    Article  Google Scholar 

  66. Kumar V, Kumar D (2017) An astrophysics-inspired grey wolf algorithm for numerical optimization and its application to engineering design problems. Adv Eng Softw 112:231–254

    Article  Google Scholar 

  67. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99

    Article  Google Scholar 

  68. Yan Z, Zhang J, Zeng J, Tang J (2021) Nature-inspired approach: an enhanced whale optimization algorithm for global optimization. Math Comput Simul 185:17–46

    Article  MathSciNet  MATH  Google Scholar 

  69. Chen H, Yang C, Heidari AA, Zhao X (2020) An efficient double adaptive random spare reinforced whale optimization algorithm. Expert Syst Appl 154:113018

    Article  Google Scholar 

  70. Mezura-Montes E, Coello CAC (2008) An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int J Gen Syst 37(4):443–473

    Article  MathSciNet  MATH  Google Scholar 

  71. Song Y, Wang F, Chen X (2019) An improved genetic algorithm for numerical function optimization. Appl Intell 49(5):1880–1902

    Article  Google Scholar 

  72. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10(2):629–640

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.61603127). The authors would like to thank all the anonymous editors and reviewers for their valuable comments and suggestions to further improve the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-hui Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guang-hui Xu, Liang Zeng and Qiang Lai contributed equally to this work.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Xu, Gh., Zeng, L. et al. Hybrid whale optimization algorithm based on symbiosis strategy for global optimization. Appl Intell 53, 16663–16705 (2023). https://doi.org/10.1007/s10489-022-04132-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-04132-9

Keywords

Navigation