Skip to main content
Log in

Generalized quantum evidence theory

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

With the development of quantum decision making, how to bridge classical theory with quantum framework has gained much attention in past few years. Recently, a complex evidence theory (CET), as a generalized Dempster–Shafer evidence theory was presented to handle uncertainty on the complex plane. Whereas, CET focuses on a closed world, where the frame of discernment is complete with exhaustive and complete elements. To address this limitation, in this paper, we generalize CET to quantum framework of Hilbert space in an open world, and propose a generalized quantum evidence theory (GQET). On the basis of GQET, a quantum multisource information fusion algorithm is proposed to handle the uncertainty in an open world. To verify its effectiveness, we apply the proposed quantum multisource information fusion algorithm in a practical classification fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cheong KH, Koh JM, Jones MC (2019) Paradoxical survival: examining the parrondo effect across biology. BioEssays 41(6):1900027

    Article  Google Scholar 

  2. Song Y, Zhu J, Lei L, Wang X (2020) A self-adaptive combination method for temporal evidence based on negotiation strategy. Sci China Inf Sci 210204:63

    Google Scholar 

  3. Deng Y (2020) Information volume of mass function. Int J Comput Commun Control 15(6):3983

    Article  MathSciNet  Google Scholar 

  4. Fujita H, Gaeta A, Loia V, Orciuoli F (2020) Hypotheses analysis and assessment in counter-terrorism activities: a method based on OWA and fuzzy probabilistic rough sets. IEEE Trans Fuzzy Syst 28:831–845

    Article  Google Scholar 

  5. Ye J, Zhan J, Ding W, Fujita H (2021) A novel fuzzy rough set model with fuzzy neighborhood operators. Inf Sci 544:266– 297

    Article  MathSciNet  MATH  Google Scholar 

  6. Deng Y (2022) Random permutation set. Int J Comput Commun Control 17(1):4542. https://doi.org/10.15837/ijccc.2022.1.4542

    Article  MathSciNet  Google Scholar 

  7. Feng F, Cho J, Pedrycz W, Fujita H, Herawan T (2016) Soft set based association rule mining. Knowl-Based Syst 111:268–282

    Article  Google Scholar 

  8. Xiao F (2021) CaFtR: a fuzzy complex event processing method. Int J Fuzzy Syst. https://doi.org/10.1007/s40815-021-01118-6

  9. Zhang S, Han D, Yang Y (2020) Active learning based on belief functions. Sci China Inf Sci 63(11):210205

    Article  MathSciNet  Google Scholar 

  10. Zhou ZJ, Hu GY, Hu CH, Wen CL, Chang LL (2021) A survey of belief rule-base expert system. IEEE Trans Syst Man Cybernet Syst 51(8):4944–4958

    Article  Google Scholar 

  11. Chang L, Zhang L, Fu C, Chen YW (2021) Transparent digital twin for output control using belief rule base. IEEE Trans Cybernet. https://doi.org/10.1109/TCYB.2021.3063285

  12. Babajanyan S, Allahverdyan A, Cheong KH (2020) Energy and entropy: path from game theory to statistical mechanics. Phys Rev Res 2(4):043055

    Article  Google Scholar 

  13. Cui H, Zhou L, Li Y, Kang B (2022) Belief entropy-of-entropy and its application in the cardiac interbeat interval time series analysis. Chaos, Solitons Fractals 111736:155. https://doi.org/10.1016/j.chaos.2021.111736

    MathSciNet  Google Scholar 

  14. Deng J, Deng Y (2021) Information volume of fuzzy membership function. Int J Comput Commun Control 16(1):4106

    Article  Google Scholar 

  15. Li D, Deng Y (2021) Measure information quality of basic probability assignment: an information volume method. Appl Intell. https://doi.org/10.1007/s10489--021--03066--y

  16. Deng X, Jiang W (2020) On the negation of a Dempster–Shafer belief structure based on maximum uncertainty allocation. Inf Sci 516:346–352

    Article  MathSciNet  MATH  Google Scholar 

  17. Xiong L, Su X, Qian H (2021) Conflicting evidence combination from the perspective of networks. Inf Sci 580:408–418

    Article  MathSciNet  Google Scholar 

  18. Meng D, Lv Z, Yang S, Wang H, Xie T, Wang Z (2021) A time-varying mechanical structure reliability analysis method based on performance degradation. Structures 34:3247–3256

    Article  Google Scholar 

  19. Wen T, Cheong KH (2021) The fractal dimension of complex networks: a review. Inf Fusion 73:87–102

    Article  Google Scholar 

  20. Yue X, Zhang C, Fujita H, Lv Y (2021) Clothing fashion style recognition with design issue graph. Appl Intell 51(6):3548–3560

    Article  Google Scholar 

  21. Lai JW, Chang J, Ang L, Cheong KH (2020) Multi-level information fusion to alleviate network congestion. Inf Fusion 63:248–255

    Article  Google Scholar 

  22. Wang Z, Wang C, Li X, Gao C, Li X, Zhu J (2020) Evolutionary markov dynamics for network community detection, vol 34. https://doi.org/10.1109/TKDE.2020.2997043

  23. Wang Z, Wang C, Gao C, Li X, Li X (2020) An evolutionary autoencoder for dynamic community detection. Sci China Inf Sci 63(11):1–16

    Article  MathSciNet  Google Scholar 

  24. Xie D, Xiao F, Pedrycz W (2021) Information quality for intuitionistic fuzzy values with its application in decision making. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2021.104568

  25. Garg H (2021) A new possibility degree measure for interval-valued q-rung orthopair fuzzy sets in decision-making. Int J Intell Syst 36(1):526–557

    Article  Google Scholar 

  26. Ni L, Chen Yw, de Brujin O (2021) Towards understanding socially influenced vaccination decision making: an integrated model of multiple criteria belief modelling and social network analysis. Eur J Oper Res 293(1):276–289

    Article  MathSciNet  MATH  Google Scholar 

  27. Fei L, Feng Y (2020) A novel retrieval strategy for case-based reasoning based on attitudinal Choquet integral. Eng Appl Artif Intell 94:103791

    Article  Google Scholar 

  28. Wang Z, Xiao F, Ding W (2022) Interval-valued intuitionistic fuzzy Jenson-Shannon divergence and its application in multi-attribute decision making. Appl Intell. https://doi.org/10.1007/s10489--022--03347--0https://doi.org/10.1007/s10489--022--03347--0

  29. Wei B, Xiao F, Fang F, Shi Y (2021) Velocity-free event-triggered control for multiple euler–lagrange systems with communication time delays. IEEE Trans Autom Control 66(11):5599– 5605

    Article  MathSciNet  MATH  Google Scholar 

  30. Yager RR (2019) Generalized Dempster–Shafer structures. IEEE Trans Fuzzy Syst 27(3):428–435

    Article  MathSciNet  Google Scholar 

  31. Li Y, Pelusi D, Cheong KH, Deng Y (2021) The arithmetics of two dimensional belief functions. Appl Intell. https://doi.org/10.1007/s10489--021--02435--x

  32. Fujita H, Ko YC (2020) A heuristic representation learning based on evidential memberships: case study of UCI-SPECTF. Int J Approx Reason 120:125–137

    Article  MathSciNet  MATH  Google Scholar 

  33. Deng Y (2020) Uncertainty measure in evidence theory. Sci China Inf Sci 63(11):210201

    Article  MathSciNet  Google Scholar 

  34. Dempster AP (1967) Upper and lower probabilities induced by a multivalued mapping. Ann Math Stat 38(2):325–339

    Article  MathSciNet  MATH  Google Scholar 

  35. Shafer G, et al. (1976) A mathematical theory of evidence, vol 1. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  36. Fang R, Liao H, Yang JB, Xu DL (2020) Generalised probabilistic linguistic evidential reasoning approach for multi-criteria decision-making under uncertainty. J Oper Res Soc 72:130–144

    Article  Google Scholar 

  37. Fu C, Xue M, Chang W, Xu D, Yang S (2020) An evidential reasoning approach based on risk attitude and criterion reliability. Knowl-Based Syst 199:105947

    Article  Google Scholar 

  38. Song X, Xiao F (2022) Combining time-series evidence: a complex network model based on a visibility graph and belief entropy. Appl Intell. https://doi.org/10.1007/s10489-021-02956-5

  39. Chen L, Deng Y (2021) An improved evidential Markov decision making model. Appl Intell. https://doi.org/10.1007/s10489--021--02850--0https://doi.org/10.1007/s10489--021--02850--0

  40. Liu P, Shen M, Teng F, Zhu B, Rong L, Geng Y (2021) Double hierarchy hesitant fuzzy linguistic entropy-based TODIM approach using evidential theory. Inf Sci 547:223– 243

    Article  Google Scholar 

  41. Cheng C, Xiao F (2021) A distance for belief functions of orderable set. Pattern Recogn Lett 145:165–170

    Article  Google Scholar 

  42. Zhou M, Liu XB, Chen YW, Qian XF, Yang JB, Wu J (2020) Assignment of attribute weights with belief distributions for MADM under uncertainties. Knowl-Based Syst 189:105110

    Article  Google Scholar 

  43. He Z, Jiang W (2018) An evidential Markov decision making model. Inf Sci 467:357–372

    Article  MathSciNet  MATH  Google Scholar 

  44. Gao X, Deng Y (2020) Quantum model of mass function. Int J Intell Syst 35(2):267–282

    Article  Google Scholar 

  45. Xiao F (2019) Generalization of Dempster–Shafer theory: a complex mass function. Appl Intell 50(10):3266–3275

    Article  Google Scholar 

  46. Xiao F (2020) Generalized belief function in complex evidence theory. J Intell Fuzzy Syst 38 (4):3665–3673

    Article  Google Scholar 

  47. Xiao F (2021) CED: A distance for complex mass functions. IEEE Trans Neural Netw Learn Syst 32(4):1525–1535

    Article  MathSciNet  Google Scholar 

  48. Zhang Z, Xiao F (2021) A novel complex evidential distance with its application in pattern recognition. Eng Appl Artif Intell 104:104312

    Article  Google Scholar 

  49. Guo H, Xiao F (2021) TDCMF: two-dimensional complex mass function with its application in decision-making. Eng Appl Artif Intell 105:104409

    Article  Google Scholar 

  50. Xiao F (2020) CEQD: a complex mass function to predict interference effects. IEEE Trans Cybernet. https://doi.org/10.1109/TCYB.2020.3040770https://doi.org/10.1109/TCYB.2020.3040770

  51. Deng Y (2015) Generalized evidence theory. Appl Intell 43(3):530–543

    Article  Google Scholar 

  52. Meyer PA (1995) Quantum probability for probabilists. Springer, Berlin

    Book  MATH  Google Scholar 

  53. Wang Z, Li Z, Wang R, Nie F, Li X (2021) Large graph clustering with simultaneous spectral embedding and discretization. IEEE Trans Pattern Anal Mach Intell 43(12):4426–4440. https://doi.org/10.1109/TPAMI.2020.3002587

    Article  Google Scholar 

  54. Xu X, Zheng J, Yang Jb, Xu Dl, Chen Yw (2017) Data classification using evidence reasoning rule. Knowl-Based Syst 116:144–151

    Article  Google Scholar 

  55. Liu Z, Liu Y, Dezert J, Cuzzolin F (2020) Evidence combination based on credal belief redistribution for pattern classification. IEEE Trans Fuzzy Syst 28(4):618–631

    Article  Google Scholar 

  56. Jiang W, Zhan J, Zhou D, Li X (2016) A method to determine generalized basic probability assignment in the open world. Math Probl Eng 2016:1–11

    Google Scholar 

Download references

Acknowledgements

The author greatly appreciates the reviewers’ suggestions and the editor’s encouragement. This research is supported by the National Natural Science Foundation of China (No. 62003280), Chongqing Talents: Exceptional Young Talents Project (No. cstc2022ycjh-bgzxm0070), Natural Science Foundation of Chongqing, China (No. 2022NSCQ-MSX2993), and Chongqing Overseas Scholars Innovation Program (No. cx2022024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyuan Xiao.

Ethics declarations

Conflict of Interests

The author declares that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, F. Generalized quantum evidence theory. Appl Intell 53, 14329–14344 (2023). https://doi.org/10.1007/s10489-022-04181-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-04181-0

Keywords

Navigation