Skip to main content
Log in

Bibliometric analysis on Brain-computer interfaces in a 30-year period

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Brain-computer interfaces (BCIs), as a promising technology for rehabilitation, have attracted significant interest in the fields such as neurosciences, computer science, and biomedical engineering. Based on the expanded database of Science Citation Index, this paper analyzes bibliometrics in the field of BCI from 1990 to 2020 and discusses its potential research trends and prospects. The work provides a detailed overview of the BCI research status founded on the country, research area, institution, journal, author, citation, and keyword. A total of 7,880 papers suggest that the United States is leading the field of BCI research, followed by China and Germany. University of California system has produced the most publications, while the Graz University of Technology is leading the list for the h-index. Journal of Neural Engineering and IEEE Transactions on Neural Systems and Rehabilitation Engineering were identified to be the most productive journals in BCIs. Keywords analysis reflects that most research has focused on electroencephalography (EEG)-based BCIs to achieve a safe, real-time, stable link between the patient and artificial actuators. We can conclude by analyzing hot articles that new materials applied to neural probes may become the next hot topic. The typical paradigm of the BCI industry is the most urgent problem that can be solved in the standardization process. The rehabilitation applications appear as the initial driving force and ultimate goal for BCIs. This research can offer valuable references to BCI practitioners and provide data support for related studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Materials Availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

availability: Code sharing not applicable to this article as no code were generated or analysed during the current study.

References

  1. Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12 (7):1211–1279

    Google Scholar 

  2. Wu DR et al (2022) Transfer learning for eeg-based brain-computer interfaces: a review of progress made since 2016. IEEE T Cogn Dev Syst 14(1):4–19

    Google Scholar 

  3. Willett FR et al (2021) High-performance brain-to-text communication via handwriting. Nature 593(7858):249–298

    Google Scholar 

  4. Al-qaysi ZT et al (2018) A review of disability eeg based wheelchair control system: coherent taxonomy, open challenges and recommendations. Comput Meth Prog Bio 164:221–237

    Google Scholar 

  5. Kim KT et al (2016) Commanding a brain-controlled wheelchair using steady-state somatosensory evoked potentials. IEEE T Neur Sys Reh 26(3):654–665

    Google Scholar 

  6. Ron-Angevin R et al (2016) Brain-controlled wheelchair through discrimination of two mental tasks. Proceedings of Sai intelligent systems conference (Intellisys) 1(15):563–574

    Google Scholar 

  7. Ajiboye AB et al (2017) Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 389(10081):1821–1830

    Google Scholar 

  8. Minev IR et al (2015) Electronic dura mater for long-term multimodal neural interfaces. Science 347(6218):159–163

    Google Scholar 

  9. Sadiq MT et al (2021) Exploiting dimensionality reduction and neural network techniques for the development of expert brain-computer interfaces. Expert Syst Appl 164:114031

    Google Scholar 

  10. Abu-Kasim MA et al (2017) User-friendly LabVIEW GUI for prosthetic hand control using Emotiv EEG headset. IEEE Int Symp Robot Intell Sens 105:276–281

    Google Scholar 

  11. Nakanishi M et al (2018) Enhancing detection of SSVEPs for a High-speed brain speller using task-related component analysis. IEEE T Bio-Med Eng 65(1):104–112

    Google Scholar 

  12. Abbasi A et al (2018) A fast intracortical brain-machine interface with patterned optogenetic feedback. J Neural Eng 15(4):046011

    Google Scholar 

  13. Flesher SN et al (2021) A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372(6544):831–854

    Google Scholar 

  14. Donati ARC et al (2016) Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep-UK 6:30383

    Google Scholar 

  15. Flesher SN et al (2016) Intracortical microstimulation of human somatosensory cortex. Sci Transl Med 8(361):61ra141

    Google Scholar 

  16. Yang YX et al (2018) A control-theoretic system identification framework and a real-time closed-loop clinical simulation testbed for electrical brain stimulation. J Neural Eng 15(6):066007

    Google Scholar 

  17. Siddharth et al (2022) Utilizing deep learning towards multi-modal bio-sensing and vision-based affective computing. IEEE T Affect Comput 13(1):96–107

    Google Scholar 

  18. Amaral C et al (2018) A feasibility clinical trial to improve social attention in autistic spectrum disorder (ASD) using a brain computer interface. Front Neurosci-Switz 12:477

    Google Scholar 

  19. Chaudhary U et al (2016) Brain-computer interfaces for communication and rehabilitation. Nat Rev Neurol 12(9):513–525

    Google Scholar 

  20. Minguillon J et al (2017) A mobile brain-computer interface for clinical applications: from the lab to the ubiquity. Int Work Conf Interplay Between Nat & Artif Comput 10338:68–76

    Google Scholar 

  21. Maksimenko VA et al (2017) Absence seizure control by a brain computer interface. Sci Rep-UK 7:2487

    Google Scholar 

  22. Luhrs M, Goebel R (2017) Turbo-Satori: a neurofeedback and brain-computer interface toolbox for real-time functional near-infrared spectroscopy. Neurophotonics 4(4):041504

    Google Scholar 

  23. Ryan DB et al (2017) Evaluating brain-computer interface performance using color in the P300 checkerboard speller. Clin Neurophysiol 128(10):2050–2057

    Google Scholar 

  24. Chowdhury A et al (2017) Online covariate shift detection based adaptive brain-computer interface to trigger hand exoskeleton feedback for neuro-rehabilitation. IEEE T Cogn Dev Syst 10(4):1070–1080

    Google Scholar 

  25. Kumar SU, Inbarani HH (2017) PSO-based feature selection and neighborhood rough set-based classification for BCI multiclass motor imagery task. Neural Comput Appl 28(11):3239–3258

    Google Scholar 

  26. Zhang S et al (2017) Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface. Neurosci Lett 655:35–40

    Google Scholar 

  27. Kuhner D et al (2019) A service assistant combining autonomous robotics, flexible goal formulation, and deep-learning-based brain-computer interfacing. Robot Auton Syst 116:98–113

    Google Scholar 

  28. Zhang MJ et al (2018) Feature extraction and classification algorithm of brain-computer interface based on human brain central nervous system. Neuroquantology 16(5):896–900

    Google Scholar 

  29. Dong EZ et al (2017) Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain–computer interfaces. Med Biol Eng Comput 55(10):1809–1818

    Google Scholar 

  30. Xu MP et al (2018) A brain computer interface based on miniature event-related potentials induced by very small lateral visual stimuli. IEEE T Bio-Med Eng 65(5):1166–1175

    Google Scholar 

  31. Kim GH et al (2018) Recent progress on microelectrodes in neural interfaces. Materials 11 (10):1995

    Google Scholar 

  32. Kireev D, Offenhaeusser A (2004) Graphene & two-dimensional devices for bioelectronics and neuroprosthetics. 2D Mater 5(4):042004

    Google Scholar 

  33. Won SM et al (2018) Recent advances in materials, devices, and systems for neural interfaces. in Adv. Mater 30(30):1800534

    Google Scholar 

  34. Zhang ZT et al (2018) Textile display for electronic and brain-interfaced communications. Adv Mater, vol 30, no. 1800323:18

    Google Scholar 

  35. Bedell HW et al (2018) Targeting CD14 on blood derived cells improves intracortical microelectrode performance. Biomaterials 163:163–173

    Google Scholar 

  36. Baniqued PDE et al (2021) Brain-computer interface robotics for hand rehabilitation after stroke: a systematic review. J Neuroeng Rehabil 18(1):15

    Google Scholar 

  37. Mehdi SSM et al (2018) Improving the performance of the SSVEP-based BCI system using optimized singular spectrum analysis (OSSA). Biomed Signal Proces 46:46–58

    Google Scholar 

  38. Bao GJ et al (2018) Soft robotics: academic insights and perspectives through bibliometric analysis. Soft Robot 5(3):229–241

    Google Scholar 

  39. Wu YQ et al (2018) Characteristics and trends of C-H activation research: a review of literature. Curr Org Synth 15(6):781–792

    Google Scholar 

  40. Merigo JM et al (2016) Bibliometric overview of business & economics research. J Bus Econ Manag 17(3):397–413

    Google Scholar 

  41. Jin J (2020) The study of generic model set for reducing calibration time in P300-based brain-computer interface. IEEE T Neur Sys Reh 28: 1 3–12

  42. Mao GZ et al (2015) Past, current and future of biomass energy research: a bibliometric analysis. Renew Sust Energ Rev. 52, 1823–1833

  43. Faust O et al (2018) Deep learning for healthcare applications based on physiological signals: a review. Comput Meth Prog Bio. 161 1–13

  44. Fetz EE (1969) Operant conditioning of cortical unit activity. Science 163(3870):955–958

    Google Scholar 

  45. Kennedy PR, Bakay RAE (1998) Restoration of neural output from a paralyzed patient by a direct brain connection. NeuroReport 9(8):1707–1711

    Google Scholar 

  46. Tahamtan I et al (2016) Factors affecting number of citations: a comprehensive review of the literature. Scientometrics 107(3):1195–1225

    Google Scholar 

  47. Prsa M (2017) Rapid integration of artificial sensory feedback during operant conditioning of motor cortex neurons. Neuron 93(4):929–946

    Google Scholar 

  48. Hochberg LR et al (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372–375

    Google Scholar 

  49. Velliste M et al (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453 (7198):1098–1101

    Google Scholar 

  50. Collinger JL et al (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–564

    Google Scholar 

  51. Knyazeva S et al (2020) Representation of auditory task components and of their relationships in primate auditory cortex. Front Neurosci-Switz 14:306

    Google Scholar 

  52. Daly JJ, Wolpaw JR (2008) Brain-computer interfaces in neurological rehabilitation. Lancet Neurol 7(11):1032–1043

    Google Scholar 

  53. Viventi J et al (2011) Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 14(12):1599–1605

    Google Scholar 

  54. Blankertz B et al (2011) Single-trial analysis and classification of ERP components — a tutorial. Neuroimage 56(2):814–825

    Google Scholar 

  55. Keefer EW et al (2008) Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 3(7):434–439

    Google Scholar 

  56. Vialatte FB et al (2009) Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol 90(4):418–438

    Google Scholar 

  57. Indiveri G et al (2011) Neuromorphic silicon neuron circuits. Front Neurosci-Switz 5:73

    Google Scholar 

  58. Chortos A et al (2016) Pursuing prosthetic electronic skin. Nat Mater 15(9):937–950

    Google Scholar 

  59. Lotte F, Guan CT (2011) Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE T Bio-Med Eng 58(2):355–362

    Google Scholar 

  60. Ramos-Murguialday A et al (2013) Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol 74(1):100–108

    Google Scholar 

  61. Cui X et al (2011) A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage 54(4):2808–2821

    Google Scholar 

  62. Khodagholy D et al (2013) In vivo recordings of brain activity using organic transistors. Nat Commun 4:1575

    Google Scholar 

  63. Haufe S et al (2014) On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage 87:96–110

    Google Scholar 

  64. Cruse D et al (2011) Bedside detection of awareness in the vegetative state: a cohort study. Lancet 378(9809):2088–2094

    Google Scholar 

  65. Muller-Putz GR, Pfurtscheller G (2007) Control of an electrical prosthesis with an SSVEP-based BCI. IEEE T Bio-Med Eng 55(1):361–364

    Google Scholar 

  66. Minev IR et al (2005) Electronic dura mater for long-term multimodal neural interfaces. Science 347(6218):159–163

    Google Scholar 

  67. Rakotomamonjy A, Guigue V (2008) BCI competition III: dataset II- ensemble of SVMs for BCI P300 speller. IEEE T Bio-Med Eng 55(3):1147–1154

    Google Scholar 

  68. Bruzzone L, Marconcini M et al (2010) Domain adaptation problems: a DASVM classification technique and a circular validation strategy. IEEE Trans Pattern Anal Mach Intell 32(5):770–787

    Google Scholar 

  69. Farina D et al (2014) The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE T Neur Sys Reh 22(4):797–809

    Google Scholar 

  70. Fattahi P et al (2014) biomaterials: a review of organic and inorganic Biomaterials for neural interfaces. Adv Mater 26(12):1846–1885

    Google Scholar 

  71. Debener S et al (2012) How about taking a low-cost, small, and wireless EEG for a walk. Psychophysiology 49(11):1617–1621

    Google Scholar 

  72. Sulzer J et al (2013) Real-time fMRI neurofeedback: progress and challenges. Neuroimage 76 (1):386–399

    Google Scholar 

  73. Aflalo T et al (2015) Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 348(6237):906–910

    Google Scholar 

  74. Lin CT et al (2011) Novel dry polymer foam electrodes for long-term EEG measurement. IEEE T Bio-Med Eng 58(5):1200–1207

    Google Scholar 

  75. Sawangjai P et al (2020) Consumer grade EEG measuring sensors as research tools: a review. IEEE Sens J 20(8):3996–4024

    Google Scholar 

  76. Chang CY et al (2020) Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings. IEEE T Bio-Med Eng 67(4):1114–1121

    Google Scholar 

  77. Zhang DL et al (2020) Making sense of spatio-temporal preserving representations for EEG-based human intention recognition. IEEE T Syst Man Cy C 50(7):3033–3044

    Google Scholar 

  78. Gruzelier JH (2013) EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants. Neurosci Biobehav R 44:124–141

    Google Scholar 

  79. Naseer N, Hong KS (2015) fNIRS-based brain-computer interfaces: a review. Front Hum Neurosci 9:3

    Google Scholar 

  80. Jorfi M et al (2015) Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. J Neural Eng 12(1):011001

    Google Scholar 

  81. Chaudhary U et al (2016) Brain-computer interfaces for communication and rehabilitation. Nat Rev Neurol 12(9):513–525

    Google Scholar 

  82. Sitaram R et al (2016) Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci 18(2):86–100

    Google Scholar 

  83. Lotte F et al (2018) A review of classification algorithms for EEG-based Brain-computer interfaces: a 10-year update. J Neural Eng 15(3):031005

    Google Scholar 

  84. Chen ST, Tan DP et al (2018) A SA-ANN-based modeling method for human cognition mechanism and the PSACO cognition algorithm. Complexity, pp 6264124

  85. Wang JX et al (2021) A context-aware recommendation system for improving manufacturing process modeling. J Intell Manuf, In Press. https://doi.org/10.1007/s10845-021-01854-4

  86. Gong JN et al (2017) White matter connectivity pattern associate with characteristics of scalp eeg signals. Brain Topogr 30(6):797–809

    Google Scholar 

  87. Fu YF et al (2016) Imagined hand clenching force and speed modulate brain activity and are classified by NIRS combined with EEG. IEEE T Neur Sys Reh 25(9):1641–1652

    Google Scholar 

  88. Choi C (2016) Nanomaterial-based soft electronics for healthcare applications. ChemNanoMat 2(11):1006–1017

    Google Scholar 

  89. Abraira VE, Ginty DD (2013) The sensory neurons of touch. Neuron 79(4):618–639

    Google Scholar 

  90. Antfolk C et al (2013) Sensory feedback in upper limb prosthetics. Expert Rev Med Devic 10 (1):45–54

    Google Scholar 

  91. Schofield JS et al (2014) Applications of sensory feedback in motorized upper extremity prosthesis: a review. Expert Rev Med Devic 11(5):499–511

    Google Scholar 

  92. Hu F et al (2019) Gel-Bbsed artificial photonic skin to sense a gentle touch by reflection. ACS Appl Mater Inter 11(17):15195–15200

    Google Scholar 

  93. Arora A et al (2018) Comparison of logistic regression, support vector machines, and deep learning classifiers for predicting memory encoding success using human intracranial EEG recordings. J Neural Eng 15 (6):066028

    Google Scholar 

  94. Mahmud M et al (2017) Applications of deep learning and reinforcement learning to biological data. IEEE T Neur Net Lear 29(6):2063–2079

    MathSciNet  Google Scholar 

  95. Chiarelli AM et al (2018) Deep learning for hybrid EEG-fNIRS Brain-computer interface: application to motor imagery classification. J Neural Eng 15(3):036028

    Google Scholar 

  96. Xie ZQ et al (2018) Decoding of finger trajectory from ECoG using deep learning. J Neural Eng 15(3):036009

    Google Scholar 

  97. Mols K et al (2017) In vivo characterization of the electrophysiological and astrocytic responses to a silicon neuroprobe implanted in the mouse neocortex. Sci Rep-UK 7(1):15642

    Google Scholar 

  98. Apollo NV et al (2015) Soft, flexible freestanding neural stimulation and recording electrodes fabricated from reduced Graphene Oxide. Adv Funct Mater 25(23):3551–3559

    Google Scholar 

  99. Barz F et al (2017) Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates. J Neural Eng 14(3):036010

    Google Scholar 

  100. Choi JR, et al (2018) Implantable neural probes for brain-machine interfaces-current developments and future prospects. Exp Neurobiol 27(6):453–471

    Google Scholar 

  101. Yang YX et al (2018) A control-theoretic system identification framework and a real-time closed-loop clinical simulation testbed for electrical brain stimulation. J Neural Eng 15(6):066007

    Google Scholar 

  102. Crea S et al (2018) Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living. Sci Rep-UK 8(1):10823

    Google Scholar 

  103. Downey JE et al (2018) Intracortical recording stability in human brain-computer interface users. in. J Neural Eng 15(4):046016

    Google Scholar 

  104. Schreuder M et al (2013) Optimizing event-related potential based brain-computer interfaces: a systematic evaluation of dynamic stopping methods. J Neural Eng 10(3):036025

    Google Scholar 

  105. Liu LL et al (2022) Stable and low-resistance polydopamine methacrylamide-polyacrylamide hydrogel for brain-computer interface. SCI China Mater 65(8):2298–2308

    Google Scholar 

  106. Keene ST et al (2020) A biohybrid synapse with neuro- transmitter-mediated plasticity. Nat Mater 19(9):969–988

    Google Scholar 

  107. Yin ZC et al (2022) Numerical modelling and experimental investigation of a two-phase sink vortex and its fluid-solid vibration characteristics, J Zhejiang Univ-SC A. In Press. https://doi.org/10.1631/jzus.A2200014

  108. Ramos-Murguialday A et al (2019) Brain-machine interface in chronic stroke: randomized trial long-term follow-up. Neurorehab Neural Re 33(3):188–198

    Google Scholar 

  109. Nakanishi M et al (2018) Enhancing detection of SSVEPs for a High-speed brain speller using task-related component analysis. IEEE T Bio-Med Eng 65(1):104–112

    Google Scholar 

  110. Cheng M et al (2002) Design and implementation of a brain-computer interface with high transfer rates. IEEE T Bio-Med Eng 49(10):1181–1186

    Google Scholar 

  111. Zhang ML et al (2020) Electronic neural interfaces. Nat Electron 3(4):191–200

    Google Scholar 

  112. Kim DH et al (2010) Structured nanoscaleDissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9(6):511–517

    Google Scholar 

  113. Yan W (2020) Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat Electron 15(10):875–895

    Google Scholar 

  114. Keene ST et al (2020) A biohybrid synapse with neurotransmitter-mediated plasticity. Nat Mater 19(9):969–982

    Google Scholar 

  115. Zheng SH et al (2021) A modal analysis of vibration response of a cracked fluid-filled cylindrical shell. Appl Math Moedl 91:934–958

    MathSciNet  MATH  Google Scholar 

  116. Xie XF et al (2020) Multiple graph fusion based on Riemannian geometry for motor imagery classification. Appl Intell 52(8):9067–9079

    Google Scholar 

  117. Nicolelis MAL, Lebedev MA (2019) OPINION principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat Rev Neurosci 10(7):530–540

    Google Scholar 

  118. Zhang Y et al (2019) Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE T Cybernetics 49(9):3322–3332

    Google Scholar 

  119. Xu RH, et al (2021) Dynamic feature selection algorithm based on Q-learning mechanism. Appl Intell 51(10):7233–7244

    Google Scholar 

  120. Tiwari S et al (2022) MIDNN- a classification approach for the EEG based motor imagery tasks using deep neural network. Appl Intell 52(5):4824–4843

    Google Scholar 

  121. Millan JDR et al (2010) Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci-Switz 4:161

    Google Scholar 

  122. Kohli V et al (2022) A review on Virtual Reality and Augmented Reality use-cases of Brain Computer Interface based applications for smart cities. Microprocess Microsy 88:104392

    Google Scholar 

  123. vanVelthoven EAM et al (2022) Ethical implications of visual neuroprostheses-a systematic review. J Neural Eng 19(2):026055

    Google Scholar 

  124. LI L et al (2022) Advances in the multiphase vortex-induced vibration detection method and its vital technology for sustainable industrial production. Appl Sci-Basel 12(17):8538

    Google Scholar 

  125. Dimyan MA, Cohen LG (2011) Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol 7(2):76–85

    Google Scholar 

  126. Belda-Lois JM et al (2011) Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil 8:66

    Google Scholar 

  127. Silvoni S et al (2011) Brain-computer interface in stroke: a review of progress. Clin EEG Neurosci 42(4):245–252

    Google Scholar 

  128. LaConte SM (2011) Decoding fMRI brain states in real-time. Neuroimage 56(2):440–454

    Google Scholar 

  129. Kim DH et al (2012) Flexible and stretchable electronics for Biointegrated devices. Annu Rev Biomed Eng 14:113–128

    Google Scholar 

  130. Weiskopf N (2012) Real-time fMRI and its application to neurofeedback. Neuroimage 62(2):682–692

    MathSciNet  Google Scholar 

  131. Tangermann M et al (2012) Review of the BCI competition IV. Front Neurosci-Switz 6:55

    Google Scholar 

  132. Shih JJ et al (2012) Brain-computer interfaces in medicine. MAYO Clin Proc 87(3):268–279

    Google Scholar 

  133. Birbaumer N et al (2013) Learned regulation of brain metabolism. Trends Cogn Sci 17(6):295–302

    Google Scholar 

  134. Borton D et al (2013) Personalized neuroprosthetics. Sci Transl Med 5(210):210rv2

    Google Scholar 

  135. Moghimi S et al (2013) A review of EEG-based Brain-computer interfaces as access pathways for individuals with severe disabilities. Assist Technol 25(2):99–110

    Google Scholar 

  136. Thomas E et al (2013) An analysis of performance evaluation for motor-imagery based BCI. J Neural Eng 10(3):031001

    Google Scholar 

  137. Bensmaia SJ, Miller LE (2014) Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat Rev Neurosci 15(5):313–325

    Google Scholar 

  138. Stoeckel LE et al (2014) Optimizing real time fMRI neurofeedback for therapeutic discovery and development. Neuroimage-Clin 5:245–255

    Google Scholar 

  139. Lopez-Gordo MA et al (2014) Dry EEG Electrodes. Sensors 14(7):12847–12870

    Google Scholar 

  140. Xu LC et al (2020) Cross-Dataset Variability Problem in EEG Decoding With Deep Learning. Front Hum Neurosci 14:103

    Google Scholar 

  141. Wang T et al (2022) Investigation on the flow field regulation characteristics of the right-angled channel by impinging disturbance method. P I Mech Eng C-J Mec, In Press. https://doi.org/10.1177/09544062221110742

  142. Gaur P (2022) Logistic Regression With Tangent Space-Based Cross-Subject Learning for Enhancing Motor Imagery Classification. IEEE T Cogn Dev Syst 14(3):1188–1197

    Google Scholar 

  143. Hamedi M et al (2016) Electroencephalographic motor imagery brain connectivity analysis for BCI: a review. Front Hum Neurosci 28(6):999–1041

    MathSciNet  MATH  Google Scholar 

  144. Blankertz B et al (2016) The Berlin brain-computer interface: progress beyond communication and control. Front Neurosci-Switz 10:530

    Google Scholar 

  145. Teo WP et al (2016) Does a combination of virtual reality, neuromodulation and neuroimaging provide a comprehensive platform for neurorehabilitation? - a narrative review of the literature. Front Hum Neurosci 10:284

    Google Scholar 

  146. Hu PF et al (2017) Survey on fog computing: architecture, key technologies, applications and open issues. J Netw Comput Appl 98:27–42

    Google Scholar 

  147. Lebedev MA, Nicolelis MAL (2017) Brain-machine interfaces: from basic science to neuroprostheses and neurorehabilitation. Physiol Rev 97(2):767–837

    Google Scholar 

  148. Meidahl AC et al (2017) Adaptive deep brain stimulation for movement disorders: the long road to clinical therapy. Movement Disord 32(6):810–819

    Google Scholar 

  149. Ramadan RA, Vasilakos AV (2017) Brain computer interface: control signals review. Neurocomputing 223:26–44

    Google Scholar 

  150. WANG YY et al (2021) Key technologies and development trends in advanced intelligent sawing equipments. Chin J Mech Eng-EN 34(1):30

    Google Scholar 

  151. Hong KS, et al (2018) Feature extraction and classification methods for hybrid fNIRS-EEG brain-computer interfaces. Front Hum Neurosci 12:246

    Google Scholar 

  152. Tan DP et al (2019) An embedded self-adapting network service framework for networked manufacturing system. J Intell Manuf 30(2):539–556

    Google Scholar 

  153. Tan DP et al (2018) An embedded cloud database service method for distributed industry monitoring. IEEE T Ind Inform 14(7):2881–2893

    Google Scholar 

  154. Yuk H et al (2019) Hydrogel bioelectronics. Chem Soc Rev 48(6):1642–1667

    Google Scholar 

  155. Slutzky MW et al (2019) Brain-machine interfaces: powerful tools for clinical treatment and neuroscientific investigations. Neuroscientist 25(2):139–154

    Google Scholar 

  156. Abiri R et al (2019) A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng 16(1):011001

    Google Scholar 

  157. Ng WL et al (2019) Print me an organ! why we are not there yet. Prog Polym Sci 97:101145

    Google Scholar 

Download references

Funding

This research was funded by the Natural Science Foundation of China (Grand Nos. 52175124, 51775501), the Zhejiang Provincial Natural Science Foundation (Grant No. LZ21E050003), and the Fundamental Research Funds for the Zhejiang Provincial Universities (Grant No. RF-C2020004).

Author information

Authors and Affiliations

Authors

Contributions

Dapeng Tan and Yuehua Wan conceived and designed the research; Zichao Yin and Lin Li analyzed the data; Hui Fang, Tong Wang and Zeng Wang contributed analysis tools and provided research platform. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yuehua Wan or Dapeng Tan.

Ethics declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Consent for Publication

All individuals involved in the study agreed to be published.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., Wan, Y., Fang, H. et al. Bibliometric analysis on Brain-computer interfaces in a 30-year period. Appl Intell 53, 16205–16225 (2023). https://doi.org/10.1007/s10489-022-04226-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-04226-4

Keywords

Navigation