Skip to main content
Log in

Semantic preserving asymmetric discrete hashing for cross-modal retrieval

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In recent years, hashing technologies have garnered substantial attention and achieved notable results due to their low storage costs and excellent retrieval efficiency. However, the majority of existing approaches build a massive pairwise similarity matrix to maintain the similarity relationship in the original space, which can easily produce huge time-space overhead and lose the class information, making these approaches unscalable to large-scale multimedia datasets. Additionally, the majority of cross-modal techniques concurrently learn the hash function and binary representations, which makes optimization more difficult. To tackle these issues, we developed a hashing approach called Semantic preserving Asymmetric discrete Hashing for cross-modal retrieval (SEAH), which aims to preserve the similarity metric based on the global semantic information and the local similarity structure. Specifically, SEAH adopts an asymmetric learning scheme and embeds class attribute information to boost the discriminating strength of the learned binary codes. Then, SEAH employs a well-designed optimization algorithm to achieve efficient iterative optimization, thus avoiding the quantization error problem. In addition, the proposed SEAH is a two-stage approach; two algorithms, SEAH-t and SEAH-s, are developed in the second stage. The first one adopts linear classifiers as hash functions, while the second is a semantic-enhanced strategy utilizing distance-distance difference minimization to improve the ability of the to-be-learnedhash functions. Extensive experiments on three frequently used benchmark datasets highlight that the proposed SEAH-t and SEAH-s are not only superior to several state-of-the-art approaches but also retain their query and storage efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Code Availability

Data available on request from the authors.

References

  1. Chen ZD, Wang Y, Li HQ et al (2021) A two-step cross-modal hashing by exploiting label correlations and preserving similarity in both steps. In: Proceedings of the 27th ACM international conference on multimedia. https://doi.org/10.1145/3343031.3350862

  2. Yang F, Liu YF, Ding XJ et al (2022) Asymmetric cross-modal hashing with high-level semantic similarity. Pattern Recogn 130:108823. https://doi.org/10.1016/j.patcog.2022.108823

    Article  Google Scholar 

  3. Hu P, Zhu HY, Lin J et al (2022) Unsupervised contrastive cross-modal hashing. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2022.3177356https://doi.org/10.1109/TPAMI.2022.3177356

  4. Fang YX, Zhang HX, Ren YW (2019) Unsupervised cross-modal retrieval via multi-modal graph regularized smooth matrix factorization hashing. Knowl-Based Syst 171:69–80. https://doi.org/10.1016/j.knosys.2019.02.004

    Article  Google Scholar 

  5. Cheng D, Yang E, Liu T, et al. (2019) Unsupervised semantic-preserving adversarial hashing for image search. IEEE Trans Image Process 28:4032–4044. https://doi.org/10.1109/TIP.2019.2903661

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang PF, Li Y, Huang Z, et al. (2022) Aggregation-based graph convolutional hashing for unsupervised cross-modal retrieval. IEEE Trans Multimedia 24:466–479. https://doi.org/10.1109/TMM.2021.3053766

    Article  Google Scholar 

  7. Zhang PF, Li Y, Huang Z et al (2022) Aggregation-based graph convolutional hashing for unsupervised cross-modal retrieval. IEEE Trans Multimedia 24:466–479. https://doi.org/10.1109/TMM.2021.3053766

    Article  Google Scholar 

  8. Luo X, Wu Y, Xu XS (2018) Scalable supervised discrete hashing for large-scale search. In: Proceedings of the world wide web conference, pp 1603–1612

  9. Yu J, Wu XJ, Kittler J (2020) Learning discriminative hashing codes for cross-modal retrieval based on multi-view features. Pattern Anal Applic 28(3):1421–1438. https://doi.org/10.1007/s10044-020-00870-z

    Article  MathSciNet  Google Scholar 

  10. Liu Y, Ji S, Fu Q et al (2022) Latent semantic-enhanced discrete hashing for cross-modal retrieval. Appl Intell. https://doi.org/10.1007/s10489-021-03143-2

  11. Luo X, Yin XY, Nie L et al (2018) Sdmch: Supervised discrete manifold-embedded cross-modal hashing. In: Proceedings of the twenty-seventh international joint conference on artificial intelligence, pp 2518–2524. https://doi.org/10.24963/ijcai.2018/349

  12. Lu X, Zhu L, Li J et al (2020) Efficient supervised discrete multi-view hashing for large-scale multimedia search. IEEE Trans Multimedia 22(8):2048–2060. https://doi.org/10.1109/TMM.2019.2947358

    Article  Google Scholar 

  13. Zhang D, Li WJ (2014) Large-scale supervised multimodal hashing with semantic correlation maximization. In: Proceedings of the 28th AAAI conference on artificial intelligence, pp 2177–2183

  14. Lin Z, Ding G, Hu M et al (2015) Semantics-preserving hashing for cross-view retrieval. In: Proceedings of the 28th international conference on computer vision and pattern recognition, vol 25(7), pp 3864–3872. https://doi.org/10.1109/CVPR.2015.7299011

  15. Zhang PF, Li CX, Liu MY et al (2017) Semi-relaxation supervised hashing for cross-modal retrieval. In: Proceedings of the 25th ACM international conference on multimedia, pp 1762–1770. https://doi.org/10.1145/3123266.3123320

  16. Tang J, Wang K, Shao L (2016) Supervised matrix factorization hashing for cross-modal retrieval. IEEE Trans Image Process 25(7):3157–3166. https://doi.org/10.1109/TIP.2016.2564638

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang YX, Luo X, Nie L, et al. (2020) Batch: a scalable asymmetric discrete cross-modal hashing. IEEE Trans Knowl Data Eng 33(11):3507–3519. https://doi.org/10.1109/TKDE.2020.2974825

    Article  Google Scholar 

  18. Wang D, Gao XB, Wang X, et al. (2019) Label consistent matrix factorization hashing for large-scale cross-modal similarity search. IEEE Trans Pattern Anal Mach Intell 41(10):2466–2479. https://doi.org/10.1109/TPAMI.2018.2861000

    Article  Google Scholar 

  19. Ma D, Liang J, Kong X et al (2016) Discrete cross-modal hashing for efficient multimedia retrieval. In: 2016 IEEE international symposium on multimedia (ISM), pp 38–43. https://doi.org/10.1109/ISM.2016.0017

  20. Xu X, Shen F, Yang Y et al (2017) Learning discriminative binary codes for large-scale cross-modal retrieval. IEEE Trans Image Process 26(5):2494–2507. https://doi.org/10.1109/TIP.2017.2676345

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang D, Zhang C, Wang Q, et al. (2022) Hierarchical semantic structure preserving hashing for cross-modal retrieval. IEEE Trans Multimedia:2494–2507. https://doi.org/10.1109/TMM.2022.3140656

  22. Kang P, Lin ZH, Yang ZG et al (2022) Intra-class low-rank regularization for supervised and semi-supervised cross-modal retrieval. Appl Intell 52(1):35–54. https://doi.org/10.1007/s10489-021-02308-3

    Article  Google Scholar 

  23. Lin L, Shu X (2022) Gaussian similarity preserving for cross-modal hashing. Neurocomputing 494:446–454. https://doi.org/10.1016/j.neucom.2022.04.125

    Article  Google Scholar 

  24. Yu G, Liu X, Wang J, et al. (2022) Flexible cross-modal hashing. IEEE Trans Neural Netw Learn Syst 33(1):304–314. https://doi.org/10.1109/TNNLS.2020.3027729

    Article  Google Scholar 

  25. Liu X, Yu JG. Wang, Xiao G et al (2019) Weakly-supervised cross-modal hashing. IEEE Trans Big Data. https://doi.org/10.1109/TBDATA.2019.2954516

  26. Chun S, Oh SJ, Sampaio de Rezende R, et al. (2021) Probabilistic embeddings for cross-modal retrieval. IEEE Conf Comput Vis Pattern Recognit:8411–8420, https://doi.org/10.1109/CVPR46437.2021.00831

  27. Wang D, Wang Q, Gao X (2018) Robust and flexible discrete hashing for cross–modal similarity search. IEEE Trans Circuits Syst Video Technol 28(10):2703–2715. https://doi.org/10.1109/TCSVT.2017.2723302

    Article  Google Scholar 

  28. Wang D, Wang Q, He L et al (2020) Joint and individual matrix factorization hashing for large-scale cross-modal retrieval. Pattern Recogn 107479. https://doi.org/10.1016/j.patcog.2020.107479

  29. Wang L, Yang L, Zareapoor M et al (2020) Cluster-wise unsupervised hashing for cross-modal similarity search. Pattern Recogn 107732. https://doi.org/10.1016/j.patcog.2020.107732

  30. Shen X, Zhang H, Li L et al (2021) Clustering-driven deep adversarial hashing for scalable unsupervised cross-modal retrieval. Neurocomputing 459:152–164. https://doi.org/10.1016/j.neucom.2021.06.087

    Article  Google Scholar 

  31. Hoang T, Do TT, Nguyen TV et al (2020) Unsupervised deep cross-modality spectral hashing. IEEE Trans Image Process 29:8391–8406. https://doi.org/10.1109/TIP.2020.3014727

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu S, Qian S, Guan Y et al (2020) Joint-modal distribution-based similarity hashing for large-scale unsupervised deep cross-modal retrieval. In: Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval, pp 1379–1388. https://doi.org/10.1145/3397271.3401086

  33. Yang D, Wu D, Zhang H et al (2020) Deep semantic-alignment hashing for unsupervised cross-modal retrieval. In: Proceedings of the 2020 international conference on multimedia retrieval, pp 44–52. https://doi.org/10.1145/3372278.3390673

  34. Jiang QY, Li WJ (2019) Discrete latent factor model for cross-modal hashing. IEEE Trans Image Process 28(7):3490–3501. https://doi.org/10.1109/TIP.2019.2897944

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhan YW, Wang Y, Sun Y et al (2022) Discrete online cross-modal hashing. Pattern Recogn 108262. https://doi.org/10.1016/j.patcog.2021.108262

  36. Zhu L, Lu X, Cheng Z, et al. (2020) Flexible multi-modal hashing for scalable multimedia retrieval. ACM Trans Intell Syst Technol 11(2):1–20. https://doi.org/10.1145/3365841

    Article  Google Scholar 

  37. Zhang D, Wu XJ, Yu J (2021) Label consistent flexible matrix factorization hashing for efficient cross-modal retrieval. ACM Trans Multimedia Comput Commun Appl 17(3):1–18. https://doi.org/10.1145/3446774

    Article  Google Scholar 

  38. Chen ZD, Li CX, Luo X, et al. (2020) Scratch: a scalable discrete matrix factorization hashing framework for cross-modal retrieval. IEEE Trans Circuits Syst Video Technol 30(7):2262–2275. https://doi.org/10.1109/TCSVT.2019.2911359

    Article  Google Scholar 

  39. Yao T, Han Y, Wang R et al (2020) Efficient discrete supervised hashing for large-scale cross-modal retrieval. Neurocomputing 385:358–367. https://doi.org/10.1016/j.neucom.2019.12.086

    Article  Google Scholar 

  40. Fang Y, Ren Y, Park JH (2020) Semantic-enhanced discrete matrix factorization hashing for heterogeneous modal matching. Knowl-Based Syst 192:105381. https://doi.org/10.1016/j.knosys.2019.105381

    Article  Google Scholar 

  41. Zhang M, Li J, Zhang H et al (2020) Deep semantic cross modal hashing with correlation alignment. Neurocomputing 381:240–251. https://doi.org/10.1016/j.neucom.2019.11.061

    Article  Google Scholar 

  42. Yang Z, Long J, Zhu L et al (2020) Nonlinear robust discrete hashing for cross-modal retrieval. In: Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval, pp 1349–1358. https://doi.org/10.1145/3397271.3401152

  43. Wang Y, Chen ZD, Luo X et al (2021) Fast cross-modal hashing with global and local similarity embedding. IEEE Trans Cybern:1–14. https://doi.org/10.1109/tcyb.2021.3059886

  44. Liu H, Ji RR, Wu YJ et al (2017) Cross-modality binary code learning via fusion similarity hashing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6345–6353. https://doi.org/10.1109/CVPR.2017.672

  45. Shen HT et al, L L, Yang Y (2021) Exploiting subspace relation in semantic labels for cross-modal hashing. IEEE Trans Knowl Data Eng 33(10):3351–3365. https://doi.org/10.1109/TKDE.2020.2970050

  46. Wang S, Zhao H, Wang Y et al (2022) Cross-modal image–text search via efficient discrete class alignment hashing. Inf Process Manag 59(3):102886. https://doi.org/10.1016/j.ipm.2022.102886

    Article  Google Scholar 

  47. Zhang DL, Wu XJ (2022) Robust and discrete matrix factorization hashing for cross-modal retrieval. Pattern Recogn 108343:122. https://doi.org/10.1016/j.patcog.2021.108343

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 62002156, 61973151, 92046026), the Natural Science Foundation of Jiangsu Province (BK20191406, BK20200839), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJB520035), the International Science and Technology Cooperation Project of Jiangsu Province (BZ2020008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yang.

Ethics declarations

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiao-jian Ding, Fu-min Ma, Jie Cao and De-yu Tong contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Zhang, Qx., Ding, Xj. et al. Semantic preserving asymmetric discrete hashing for cross-modal retrieval. Appl Intell 53, 15352–15371 (2023). https://doi.org/10.1007/s10489-022-04282-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-04282-w

Keywords

Navigation