Skip to main content
Log in

Multi-label learning with Relief-based label-specific feature selection

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Multi-label learning is an emerging paradigm exploiting samples with rich semantics. As an effective solution to multi-label learning, the strategy of label-specific features (LIFT) has been widely applied. Technically, such strategy feeds the tailored features to learning model instead of the original ones. However, tailoring features for each label may cause redundancy or irrelevance in feature space, thereby deteriorating the learning performance. To alleviate such a problem, a novel multi-label classification method named Relief-LIFT is proposed in this study. Relief-LIFT firstly leverages LIFT to generate the toiled features, and then adjusts Relief to select informative features from those toiled ones for the classification model. Experimental results on 12 real-world multi-label data sets demonstrate that, our proposed Relief-LIFT can achieve better performance as compared with other well-established multi-label classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1

Similar content being viewed by others

Data Availability

The image data generated or analysed during this study is included in this published article [Refer: M.L. Zhang, Z.H. Zhou, ML-kNN: A lazy learning approach to multi-label learning, Pattern Recognition, 40, 2038-2048 (2007)]. The remaining data sets generated during or analysed during the current study are available in the Mulan repository, [http://mulan.sourceforge.net/index.html].

References

  1. Sun S, Zong D (2020) Lcbm: a multi-view probabilistic model for multi-label classification. IEEE T Pattern Anal 43(8):2682–2696

    Article  Google Scholar 

  2. Law A, Ghosh A (2021) Multi-label classification using binary tree of classifiers. IEEE T Em Top Comp I 6(3):677–689

    Google Scholar 

  3. Wever M, Tornede A, Mohr F, Hüllermerier E (2021) AutoML for multi-label classification: overview and empirical evaluation. IEEE T Pattern Anal 43(9):3037–3054

    Article  Google Scholar 

  4. Chen Z, Ren J (2021) Multi-label text classification with latent word-wise label information. Appl Intell 51:966–979

    Article  Google Scholar 

  5. Zhang P, Liu G, Gao W, Song J (2021) Multi-label feature selection considering label supplementation. Pattern Recogn 120:108137

    Article  Google Scholar 

  6. Pereira RB, Plastino A, Zadrozny B, Merschmann LH (2018) Categorizing feature selection methods for multi-label classification. Artif Intell Rev 49(1):57–78

    Article  Google Scholar 

  7. Cevikalp H, Benligiray B, Gerek ON (2020) Semi-supervised robust deep neural networks for multi-label image classification. Pattern Recogn 100:107164

    Article  Google Scholar 

  8. Liu T, Wang J, Yang B, Wang X (2021) Facial expression recognition method with multi-label distribution learning for non-verbal behavior understanding in the classroom. Infrared Phys Techn 112:103594

    Article  Google Scholar 

  9. Liu T, Yang B, Liu H, Ju J, Tang J, Subramanian S, Zhang Z (2022) GMDL: toward Precise head pose estimation via Gaussian mixed distribution learning for students’ attention understanding. Infrared Phys Techn 122:104099

    Article  Google Scholar 

  10. Liu T, Wang J, Yang B, Wang X (2021) NGDNEt: nonuniform Gaussian-label distribution learning for infrared head pose estimation and on-task behavior understanding in the classroom. Neurocomputing 436:210–220

    Article  Google Scholar 

  11. Fernandes MS, Cordeiro W, Recamonde-Mendoza M (2021) Detecting Aedes aegypti mosquitoes through audio classification with convolutional neural networks. Comput Biol Med 129:104152

    Article  Google Scholar 

  12. Koutini K, Eghbal-zadeh H, Widmer G (2021) Receptive field regularization techniques for audio classification and tagging with deep convolutional neural networks. IEEE-ACM T Audio SPE 29:1987–2000

    Google Scholar 

  13. Shrestha R, Glackin C, Wall J, Cannings N (2021) Bird audio diarization with faster R-CNN. In: International conference on artificial neural networks. Springer, Cham, pp 415–426

  14. Liu H, Wang X, Zhang W, Zhang Z, Li YF (2020) Infrared head pose estimation with multi-scales feature fusion on the IRHP database for human attention recognition. Neurocomputing 411:510–520

    Article  Google Scholar 

  15. Liu H, Zheng C, Li D, Zhang Z, Lin K, Shen X, et al. (2022) Multi-perspective social recommendation method with graph representation learning. Neurocomputing 468:469–481

    Article  Google Scholar 

  16. Liu H, Nie H, Zhang Z, Li YF (2021) Anisotropic angle distribution learning for head pose estimation and attention understanding in human-computer interaction. Neurocomputing 433:310–322

    Article  Google Scholar 

  17. Zhang ML, Wu L (2014) LIFT: multi-Label learning with label-specific features. IEEE T Pattern Anal 37(1):107–120

    Article  Google Scholar 

  18. Sun S, Zong D (2020) Lcbm: a multi-view probabilistic model for multi-label classification. IEEE T Pattern Anal 43(8):2682– 2696

    Article  Google Scholar 

  19. Xu SP, Yang XB, Yu HL, Yu DJ, Yang J, Tsang EC (2016) Multi-label learning with label-specific feature reduction. Knowl-Based Syst 104:52–61

    Article  Google Scholar 

  20. Kira K, Rendell LA (1992) A practical approach to feature selection. In: 9th International conference on machine learning. Morgan Kaufmann, pp 249-256

  21. Tsoumakas G, Katakis I, Vlahavas I (2009) Mining multi-label data. Data Min Knowl Disc 2009:667–685

    Google Scholar 

  22. Liu T, Li YF, Liu H, Zhang Z, Liu S (2019) RISIR: rapid infrared spectral imaging restoration model for industrial material detection in intelligent video systems. IEEE T Ind Inform, Early Access. https://doi.org/10.1109/TII.2019.2930463

  23. Liu T, Liu H, Li YF, Chen Z, Zhang Z, Liu S (2019) Flexible FTIR spectral imaging enhancement for industrial robot infrared vision sensing. IEEE T Ind Inform 16(1):544–554

    Article  Google Scholar 

  24. Liu T, Liu H, Li Y, Zhang Z, Liu S (2018) Efficient blind signal reconstruction with wavelet transforms regularization for educational robot infrared vision sensing. IEEE-Asme T Mech 24(1):384–394

    Article  Google Scholar 

  25. Boutell MR, Luo J, Shen X, Brown CM (2004) Learning multi-label scene classification. Pattern Recogn 37(9):1757–1771

    Article  Google Scholar 

  26. Zhang ML, Zhou ZH (2007) ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn 40(7):2038–2048

    Article  MATH  Google Scholar 

  27. Zhang ML, Peña JM, Robles V (2009) Feature selection for multi-label naive Bayes classification. Inform Sciences 179:3218– 3229

    Article  MATH  Google Scholar 

  28. Liu H, Liu T, Zhang Z, Sangaiah AK, Yang B, Li Y (2022) ARHPE: asymmetric relation-aware representation learning for head pose estimation in industrial human ccomputer interaction. IEEE T Ind Inform 18(10):7107–7117

    Article  Google Scholar 

  29. Liu H, Zheng C, Li D, Shen X et al (2021) EDMF: efficient deep matrix factorization with review feature learning for industrial recommender system. IEEE T Ind Inform 18(7):4361–4371

    Article  Google Scholar 

  30. Zhang JJ, Fang M, Li X (2015) Multi-label learning with discriminative features for each label. Neurocomputing 154:305–316

    Article  Google Scholar 

  31. Huang J, Li G, Huang Q, Wu X (2015) Learning label specific features for multi-label classification. In: 2015 IEEE international conference on data mining. IEEE, pp 181–190

  32. Zhang Y, Gong DW, Sun XY, Guo YN (2017) A PSO-based multi-objective multi-label feature selection method in classification. Sci Rep-UK 7(1):1–12

    Google Scholar 

  33. Zhang J, Li C, Cao D, Lin Y, Su S, Dai L, Li S (2018) Multi-label learning with label-specific features by resolving label correlations. Knowl-Based Syst 159:148–157

    Article  Google Scholar 

  34. Li H, Li DY, Wang SG (2015) Multi-label learning with label-specific features based on rough sets. J Comput Syst Sci 36(12):2730–2734

    Google Scholar 

  35. Sinaga KP, Yang MS (2020) Unsupervised K-means clustering algorithm. IEEE Access 8:80716–80727

    Article  Google Scholar 

  36. Zhang J, Luo Z, Li C, Zhou C, Li S (2019) Manifold regularized discriminative feature selection for multi-label learning. Pattern Recogn 95:136–150

    Article  Google Scholar 

  37. Chen T, Lin L, Hui X, Chen R, Wu H (2020) Knowledge-guided multi-label few-shot learning for general image recognition. IEEE T Pattern Anal. https://ieeexplore.ieee.org/document/9207855/

  38. Zhang Y, Wang Y, Liu XY, Mi S, Zhang ML (2020) Large-scale multi-label classification using unknown streaming images. Pattern Recogn 99:107100

    Article  Google Scholar 

  39. Zhang ML, Fang JP (2020) Partial multi-label learning via credible label elicitation. IEEE T Pattern Anal 43(10):3587– 3599

    Article  Google Scholar 

  40. Wang J, Yang L, Huo Z, He W, Luo J (2020) Multi-label classification of fundus images with efficientnet. IEEE Access 8:212499–212508

    Article  Google Scholar 

  41. Fan X, Chen X, Wang C, Wang Y, Zhang Y (2022) Margin attribute reductions for multi-label classification. Appl Intell 52(6):6079–6092

    Article  Google Scholar 

  42. Zhang ML, Fang JP, Wang YB (2021) Bilabel-specific features for multi-label classification. ACM T Knowl Discov D 16(1):1–23

    Google Scholar 

  43. Zhang QW, Zhong Y, Zhang ML (2018) Feature-induced labeling information enrichment for multi-label learning. In: Proceedings of the 32nd AAAI conference on artificial intelligence (AAAI’18). New Orleans, TX, 4446-4453

  44. Yu ZB, Zhang ML (2021) Multi-label classification with label-specific feature generation: a wrapped approach. IEEE T Pattern Anal 44(9):5199–5210

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (62076111, 62006128, 62006099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyu Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, K., Yang, X. et al. Multi-label learning with Relief-based label-specific feature selection. Appl Intell 53, 18517–18530 (2023). https://doi.org/10.1007/s10489-022-04350-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-04350-1

Keywords

Navigation