Abstract
In this paper, a new population initialization method for metaheuristic algorithms is proposed. In our approach, the initial set of candidate solutions is obtained through the sampling of the objective function with the use of the Metropolis–Hastings technique. Under this method, the set of initial solutions adopts a value close to the prominent values of the objective function to be optimized. Different from most of the initialization methods that consider only spatial distribution, in our algorithm, the initial points represent promising regions of the search space, which deserve to be exploited to identify the global optimum. These characteristics allow the proposed approach obtains a faster convergence and improves the quality of the produced solutions. With the objective to demonstrate the capacities of our initialization method, it has been embedded in the classical Differential Evolution algorithm. To evaluate its performance, the complete system has been tested in a set of representative benchmark functions extracted from several datasets. Experimental results show that the proposed technique presents a better convergence speed and an increment in the quality of the solutions than other similar approaches.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Yang X (2010) Engineering optimization. John Wiley & Sons, Inc
Jahn J (2007) Introduction to the theory of nonlinear optimization. Springer-Verlag, Berlin Heidelberg
Cuevas E, Rodriguez A (2020) Metaheuristic computation with MATLAB®. Chapman and Hall/CRC
Maciel O, Cuevas E, Navarro M, Zaldívar D, Hinojosa S (2020) Side-blotched lizard algorithm: a polymorphic population approach. Appl Soft Comput 88:106039
Holland, J. H. (1975). Adaptation in natural and artificial systems, univ. of mich. Press. Ann Arbor
Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359
De Castro L, Timmis J (2022) An artificial immune network for multimodal function optimiza[1]tion. In: Proc. of the Congress on Evolutionary Computation (CEC), vol 1. IEEE Computer Society, Los Alamitos, pp 699–704
Fogel DB (1998) Artificial intelligence through simulated evolution (pp. 227–296). Wiley-IEEE Press
Rashedi E, Nezamabadi-Pour H, Saryazdi S (2011) Filter modeling using gravitational search algorithm. Eng Appl Artif Intell 24(1):117–122. https://doi.org/10.1016/j.engappai.2010.05.007
Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680. https://doi.org/10.1126/science.220.4598.671
Birbil ŞI, Fang SC (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25(3):263–282. https://doi.org/10.1023/A:1022452626305
Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3–4):267–289. https://doi.org/10.1007/s00707-009-0270-4
Cuevas E, Cienfuegos M, Zaldívar D, Pérez-Cisneros M (2013) A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst Appl 40(16):6374–6384. https://doi.org/10.1016/j.eswa.2013.05.041
Kennedy J, Eberhart R (1995) Particle swarm optimization. In proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942-1948). IEEE
Karaboga D (2005) An idea based on honey bee swarm for numerical optimization (Vol. 200, pp. 1-10). Technical report-tr06, Erciyes university, engineering faculty, computer engineering department
Yang X-S, Deb S (2010) Cuckoo search via levy flights. 210–214. http://arxiv.org/abs/1003.1594
Kononova AV, Caraffini F, Bäck T (2021) Differential evolution outside the box. Inf Sci 581:587–604
Ochoa P, Castillo O, Melin P, Soria J (2021) Differential evolution with shadowed and general Type-2 fuzzy Systems for Dynamic Parameter Adaptation in optimal Design of Fuzzy Controllers. Axioms 10:194
Ochoa P, Castillo O, Soria J (2020) High-speed interval Type-2 fuzzy system for dynamic crossover parameter adaptation in differential evolution and its application to controller optimization. Int J Fuzzy Syst 22:414–427
Zhang J, Arthur C (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958
Qin AK, Suganthan PN (2005) Self-adaptive diferential evolution algorithm for numerical optimization. In: 2005 IEEE Congress on Evolutionary Computation, vol 2, Edinburgh, pp 1785–1791. https://doi.org/10.1109/CEC.2005.1554904
Bres J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657. https://doi.org/10.1109/TEVC.2006.872133
Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation, pp 71–78. https://doi.org/10.1109/CEC.2013.6557555
Tanabe R, Fukunaga AS (2014) Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp 1658–1665. https://doi.org/10.1109/CEC.2014.6900380
Wen J, Ma H, Zhang X (2016) Optimization of the occlusion strategy in visual tracking. Tsinghua Sci Technol 21(2):221–230. https://doi.org/10.1109/TST.2016.7442504
Rahnamayan S, Tizhoosh HR, Salama MMA (2007) A novel population initialization method for accelerating evolutionary algorithms. Comput Math Appl 53(10):1605–1614. https://doi.org/10.1016/j.camwa.2006.07.013
Hui W, Zhijian W, Liu Y, Jing W, Dazhi J, Lili C (2009) Space transformation search: a new evolutionary technique. In Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation (GEC '09). Association for Computing Machinery, New York, pp 537–544. https://doi.org/10.1145/1543834.1543907
Geyer CJ (1992) Practical Carlo chain Monte Markov. Stat Sci 7(4):473–483
Pan W, Li K, Wang M, Wang J, Jiang B (2014) Adaptive randomness: a new population initialization method, mathematical problems in engineering, vol 2014, p 14
Ahmad MF, Isa NAM, Limb WH, Ang KM Differential evolution with modified initialization scheme using chaotic oppositional based learning strategy. Alexan Engin J 61(12, 2022):11835–11858
Li Q, Bai Y, Gao W (2021) Improved Initialization Method for Metaheuristic Algorithms: A Novel Search Space View. EEE Access 9:158508–158539
Chib S, Greenberg E (1995) Understanding the Metropolis–Hastings Algorithm. Am Stat 49(4):327–335
Chauveau D, Vandekerkhove P (2002) Improving convergence of the Hastings-Metropolis algorithm with an adaptive proposal. Scand J Stat 29(1):13–29
Rahnamayan S, Tizhoosh HR, Salama MMA (2007) A novel population initialization method for accelerating evolutionary algorithms. Comput Math Appl 53(10):1605–1614
Andre J, Siarry P, Dognon T (2001) An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization. Adv Eng Softw 32(1):49–60
Rahnamayan RS, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79
Wang H, Wu Z, Rahnamayan S (2011) Enhanced oppositionbased differential evolution for solving high-dimensional continuous optimization problems. Soft Comput 15(11):2127–2140
Garcia S, Fernandez A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180(10):2044–2064
Črepinšek M, Liu SH, Mernik M (2013) Exploration and exploitation in evolutionary algorithms. ACM Comput Surv 45(3):1–33
Piotrowski AP (2017) Review of diferential evolution population size. Swarm Evol Comput 32:1–24
Jerebic J, Mernik M, Liu SH, Ravber M, Baketarić M, Mernik L, Črepinšek M (2021) A novel direct measure of exploration and exploitation based on attraction basins. Expert Syst Appl 167:114353
Li Y, Wang S, Yang B, Hu C, Wu Z, Yang H, Population reduction with individual similarity for diferential evolution, Artifcial Intelligence Review In press
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A
Appendix A
Name | MInimum | S | D | Function | |
---|---|---|---|---|---|
f(x)1 | Ackley | f(x∗) = 0; x∗ = (0, …, 0) | [−30, 30]d | 30 | \( f(x)=-20\exp \left(-0.2\sqrt{\frac{1}{d}\sum \limits_{i=d}^d{x}_i^2}\right)-\exp \left(\frac{1}{d}\sum \limits_{i=1}^d\cos \left(2\pi {x}_i\right)\right)+\exp (1)+20 \) |
f(x)2 | Dixon-Price | f(x∗) = 0; \( {\mathbf{x}}^{\ast}={2}^{-\frac{2^i-2}{2^i}} \) for i = 1, …, n | [−10, 10]d | 30 | \( f(x)={\left({x}_1-1\right)}^2+\sum \limits_{i=2}^di{\left(2{x}_i^2-{x}_{i-1}\right)}^2 \) |
f(x)3 | Griewank | f(x∗) = 0; x∗ = (0, …, 0) | [−600, 600]d | 30 | \( f(x)=\sum \limits_{i=1}^d\frac{x_i^2}{4000}-\prod \limits_{i=1}^d\cos \left(\frac{x_i}{\sqrt{i}}\right)+1 \) |
f(x)4 | Infinity | f(x∗) = 0; x∗ = (0, …, 0) | [−1, 1]d | 30 | \( f(x)=\sum \limits_{i=1}^d{x}_i^6\left( sen\left({x}_i\right)+2\right) \) |
f(x)5 | Levy | f(x∗) = 0; x∗ = (1, …, 1) | [−10, 10]d | 30 | \( f(x)={\mathit{\sin}}^2\left(\pi {\omega}_1\right)+\sum \limits_i^{d-1}{\left({\omega}_1-1\right)}^2\left[1+10{\mathit{\sin}}^2\left(\pi {\omega}_i+1\right)\right]+{\left({\omega}_d-1\right)}^2\left[1+\right]{\mathit{\sin}}^2\left(2\pi {\omega}_d\right) \) \( whre\kern0.5em {\omega}_i=1+\frac{x_i-1}{4} \) |
f(x)6 | Mishra 1 | f(x∗) = 2; x∗ = (1, …, 1) | [0, 1]d | 30 | \( f(x)={\left(1+\left(d-\sum \limits_{i=1}^{d-1}{x}_i\right)\right)}^{d-\sum \limits_{i=1}^{d-1}{x}_i} \) |
f(x)7 | Mishra 2 | f(x∗) = 2; x∗ = (1, …, 1) | [0, 1]d | 30 | \( f(x)={\left(1+\left(d-\sum \limits_{i=1}^{d-1}\frac{x_i+{x}_{i+1}}{2}\right)\right)}^{d-\sum \limits_{i=1}^{d-1}\left(\frac{x_i+{x}_{i+1}}{2}\right)} \) |
f(x)8 | Mishra 11 | f(x∗) = 0; x∗ = (0, …, 0) | [−10, 10]d | 30 | \( f(x)={\left[\frac{1}{d}\sum \limits_{i=1}^d\left|{x}_i\right|-{\left(\prod \limits_{i=1}^d|{x}_i|\right)}^{\frac{1}{d}}\right]}^2 \) |
f(x)9 | MultiModal | f(x∗) = 0; x∗ = (0, …, 0) | [−10, 10]d | 30 | \( f(x)=\sum \limits_{i=1}^d\mid {x}_i\mid \prod \limits_{i=1}^d\mid {x}_i\mid \) |
f(x)10 | Penalty 1 | f(x∗) = 0; x∗ = (−1, …, −1) | [−50, 50]d | 30 | \( f(x)=\frac{\pi }{30}\left(10{\mathit{\sin}}^2\left(\pi {y}_1\right)+\sum \limits_{i=1}^{d-1}{\left({y}_i-1\right)}^2\left[1+10{\mathit{\sin}}^2\left(\pi {y}_{i+1}\right)\right]+{\left({y}_i-1\right)}^2\right)+\sum \limits_{i=1}^du\left({x}_i,\mathrm{10,100,4}\right) \) \( {y}_i=1+\frac{x_i+1}{4},u\left({x}_i,a,k,m\right)\left\{\begin{array}{c}k{\left({x}_i-a\right)}^m\kern0.5em ,{x}_i>a\\ {}0\kern0.5em ,-a\le {x}_i\le a\\ {}\begin{array}{cc}k{\left(-{x}_i-a\right)}^m&, {x}_i<-a\end{array}\end{array}\right. \) |
f(x)11 | Penalty 2 | f(x∗) = 0; x∗ = (1, …, 1) | [−50, 50]d | 30 | \( f(x)=0.1\left({\left(\mathit{\sin}\left(3\pi {x}_1\right)\right)}^2+\sum \limits_{i=1}^{d-1}{\left({x}_i-1\right)}^2\left[1+{\mathit{\sin}}^2\left(3\pi {x}_{i+1}\right)\right]+\left[{\left({x}_i-1\right)}^2{\left(\mathit{\sin}\left(2\pi {x}_i\right)\right)}^2\right]\right)+\sum \limits_{i=1}^du\left({x}_i,\mathrm{5,100,4}\right) \) \( \kern0.5em u\left({x}_i,a,k,m\right)\left\{\begin{array}{c}k{\left({x}_i-a\right)}^m\kern0.5em ,{x}_i>a\\ {}\begin{array}{cc}0&, -a\le {x}_i\le a\end{array}\\ {}\begin{array}{cc}k{\left(-{x}_i-a\right)}^m&, {x}_i<-a\end{array}\end{array}\right. \) |
f(x)12 | Perm 1 | f(x∗) = 0; x∗ = (1, 2, …, n) | [−d, d]d | 30 | \( f(x)=\sum \limits_{k=1}^d{\left[\sum \limits_{i=1}^d\left({i}^k+50\right)\left({\left(\frac{x_i}{i}\right)}^k-1\right)\right]}^2 \) |
f(x)13 | Perm 2 | f(x∗) = 0; x∗ = (1, 1/2, …, 1/n) | [−d, d]d | 30 | \( f(x)=\sum \limits_{i=1}^d{\left[\sum \limits_{j=1}^d\left({j}^i+10\right)\Big({\left({x}_j^i-\frac{1}{j^i}\right)}^i\right]}^2 \) |
f(x)14 | Plateau | f(x∗) = 30; x∗ = (0, …, 0) | [−5.12, 5.12]d | 30 | \( f(x)=30+\sum \limits_{i=1}^d\mid {x}_i\mid \) |
f(x)15 | Powell | f(x∗) = 0; x∗ = (0, …, 0) | [−4, 5]d | 30 | \( f(x)=\sum \limits_{i=1}^{\frac{d}{4}}\left[{\left({x}_{4i-3}+10{x}_{4i-2}\right)}^2+5{\left({x}_{4i-1}-{x}_{4i}\right)}^2+{\left({x}_{4i-2}-{x}_{4i-1}\right)}^4+10{\left({x}_{4i-3}-{x}_{4i}\right)}^4\right] \) |
f(x)16 | Quing | f(x∗) = 0; x∗ = (0, …, 0) | [−1.28, 1.28]d | 30 | \( f(x)=\sum \limits_{i=1}^d{\left({x}_i^2-i\right)}^2 \) |
f(x)17 | Quartic | f(x∗) = 0; x∗ = (−1, …, −1) | [−10, 10]d | 30 | \( f(x)=\sum \limits_{i=1}^di{x}_i^4+\mathit{\operatorname{rand}}\left[0,1\right) \) |
f(x)18 | Quintic | f(x∗) = 0; x∗ = (0, …, 0) | [−5.12, 5.12]d | 30 | \( f(x)=\sum \limits_{i=1}^d\mid {x}_i^5-3{x}_i^4+4{x}_i^3+2{x}_i^2-10{x}_i-4\mid \) |
f(x)19 | Rastrigin | f(x∗) = 0; x∗ = (1, …, 1) | [−5, 10]d | 30 | \( f(x)=10d+\sum \limits_{i=1}^d\left[{x}_i^2-10\cos \left(2\pi {x}_i\right)\right] \) |
f(x)20 | Rosenbrock | f(x∗) = 0; x∗ = (0.5, …, 0.5) | [−100, 100]d | 30 | \( f(x)=\sum \limits_{i=1}^d100{\left({x}_{i+1}-{x_i}^2\right)}^2+{\left({x}_i-1\right)}^2 \) |
f(x)21 | Schwefel 21 | f(x∗) = 0; x∗ = (0, …, 0) | [−100, 100]d | 30 | f(x) = max {|xi|, 1 ≤ i ≤ d} |
f(x)22 | Schwefel 22 | f(x∗) = 0; x∗ = (0, …, 0) | [−100, 100]d | 30 | \( f(x)=\sum \limits_{i=1}^d\left|{x}_i\right|+\prod \limits_{i=1}^d\left|{x}_i\right| \) |
f(x)23 | Schwefel 26 6 | f(x∗) = 0; \( {\mathbf{x}}^{\ast}=\left(\begin{array}{c}420.9687,\\ {}\dots, 420.9687\end{array}\right) \) | [−500, 500]d | 30 | \( f(x)=\sum \limits_{i=1}^d\left(-{x}_i\left(\sin \left(\sqrt{\mid {x}_i\mid}\right)\right)\right) \) |
f(x)24 | Step | f(x∗) = 0; x∗ = (0, …, 0) | [−100, 100]d | 30 | \( f(x)=\sum \limits_{i=1}^d\mid {x}_i^2\mid \) |
f(x)25 | Stybtang | f(x∗) = − 39.1659n; x∗ = (−2.90, …, 2.90) | [−5, 5]d | 30 | \( f(x)=\frac{1}{2}\sum \limits_{i=1}^d\left({x}_i^4-16{x}_i^2+5{x}_i\right) \) |
f(x)26 | Trid | f(x∗) = − n(n + 4)(n − 1)/6; x∗ = [i(n + 1 − i)] for i = 1, …, n | [−d2, d2]d | 30 | \( f(x)=\sum \limits_{i=1}^d{\left({x}_i-1\right)}^2-\sum \limits_{i=2}^d{x}_i{x}_{i-1} \) |
f(x)27 | Vincent | f(x∗) = − n; x∗ = (7.70, …, 7.70) | [0.25, 10]d | 30 | \( f(x)=-\frac{1}{n}\sum \limits_{i=1}^n\sin \left[10\log \left({x}_i\right)\right] \) |
f(x)28 | Zakharov | f(x∗) = 0; x∗ = (0, …, 0) | [−5, 10]d | 30 | \( f(x)=\sum \limits_{i=1}^d{x}_i^2+{\left(\sum \limits_{i=1}^d0.5i{x}_i\right)}^2+{\left(\sum \limits_{i=1}^d0.5i{x}_i\right)}^4 \) |
f(x)29 | Rothyp | f(x∗) = 0; x∗ = (0, …, 0) | [−65.536, 65.536]n | 30 | \( f(x)=\sum \limits_{i=1}^d\sum \limits_{j=1}^i{x}_j^2 \) |
f(x)30 | Schwefel 2 | f(x∗) = 0; x∗ = (0, …, 0) | [−100, 100]d | 30 | \( f(x)=\sum \limits_{i=1}^d{\left(\sum \limits_{j=1}^i{x}_i\right)}^2 \) |
f(x)31 | Sphere | f(x∗) = 0; x∗ = 0, …, 0 | [−5, 5]d | 30 | \( f(x)=\sum \limits_{i=1}^d{x}_i^2 \) |
f(x)32 | Sum2 | f(x∗) = 0; x∗ = (0, …, 0) | [−10, 10]d | 30 | \( f(x)=\sum \limits_{i=1}^d{ix}_i^2 \) |
f(x)33 | Sumpow | f(x∗) = 0; x∗ = (0, …, 0) | [−1, 1]d | 30 | \( f(x)=\sum \limits_{i=1}^d{\left|{x}_i\right|}^{i+1} \) |
f(x)34 | Rastringin + Schwefel22 + Sphere | f(x∗) = 0; x∗ = (0, …, 0) | [−100, 100]d | 30 | \( f(x)=\left[10d+\sum \limits_{i=1}^d\left[{x}_i^2-10\cos \left(2\pi {x}_i\right)\right]\right]+\left[\sum \limits_{i=1}^d\left|{x}_i\right|+\prod \limits_{i=1}^d\left|{x}_i\right|\right]+\left[\sum \limits_{i=1}^d{x}_i^2\right] \) |
f(x)35 | Griewank + Rastrigin + Rosenbrock | f(x∗) = n − 1; x∗ = (0, …, 0) | [−100, 100]d | 30 | \( f(x)=\left[\sum \limits_{i=1}^d\frac{x_i^2}{4000}-\prod \limits_{i=1}^d\cos \left(\frac{x_i}{\sqrt{i}}\right)+1\right]+\left[10d+\sum \limits_{i=1}^d\left[{x}_i^2-10\cos \left(2\pi {x}_i\right)\right]\right]+\left[\sum \limits_{i=1}^d100{\left({x}_{i+1}-{x_i}^2\right)}^2+{\left({x}_i-1\right)}^2\right] \) |
f(x)36 | Ackley + Penalty2 + Rosenbrock + Schwefel22 | f(x∗) = (1.1n) − 1; x∗ = (0, …, 0) | [−100,100]d | 30 | \( f(x)=\left[-20\exp \left(-0.2\sqrt{\frac{1}{d}\sum \limits_{i=d}^d{x}_i^2}\right)-\exp \left(\frac{1}{d}\sum \limits_{i=1}^d\cos \left(2\pi {x}_i\right)\right)+\exp (1)+20\right]+\left[0.1\left({\left(\sin \left(3\pi {x}_1\right)\right)}^2+\sum \limits_{i=1}^{d-1}{\left({x}_i-1\right)}^2\left[1+{\mathit{\sin}}^2\left(3\pi {x}_{i+1}\right)\right]+\left[{\left({x}_i-1\right)}^2{\left(\sin \left(2\pi {x}_i\right)\right)}^2\right]\right)+\sum \limits_{i=1}^du\left({x}_i,\mathrm{5,100,4}\right)\right]+\left[\sum \limits_{i=1}^d100{\left({x}_{i+1}-{x_i}^2\right)}^2+{\left({x}_i-1\right)}^2\right]+\left[\sum \limits_{i=1}^d\left|{x}_i\right|+\prod \limits_{i=1}^d\left|{x}_i\right|\right] \) |
f(x)37 | Ackley + Griewnk + Rastringin + Rosenbrock + Schwefel22 | f(x∗) = n − 1; x∗ = (0, …, 0) | [−100,100]d | 30 | \( f(x)=\left[-20\exp \left(-0.2\sqrt{\frac{1}{d}\sum \limits_{i=d}^d{x}_i^2}\right)-\exp \left(\frac{1}{d}\sum \limits_{i=1}^d\cos \left(2\pi {x}_i\right)\right)+\exp (1)+20\right]+\left[\sum \limits_{i=1}^d\frac{x_i^2}{4000}-\prod \limits_{i=1}^d\cos \left(\frac{x_i}{\sqrt{i}}\right)+1\right]+\left[10d+\sum \limits_{i=1}^d\left[{x}_i^2-10\cos \left(2\pi {x}_i\right)\right]\right]+\left[\sum \limits_{i=1}^d100{\left({x}_{i+1}-{x_i}^2\right)}^2+{\left({x}_i-1\right)}^2\right]+\left[\sum \limits_{i=1}^d\left|{x}_i\right|+\prod \limits_{i=1}^d\left|{x}_i\right|\right] \) |
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cuevas, E., Escobar, H., Sarkar, R. et al. A new population initialization approach based on Metropolis–Hastings (MH) method. Appl Intell 53, 16575–16593 (2023). https://doi.org/10.1007/s10489-022-04359-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10489-022-04359-6