Skip to main content
Log in

Building discriminative features of scene recognition using multi-stages of inception-ResNet-v2

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Scene recognition is a challenging problem due to intra-class variations and inter-class similarities. Traditional methods and convolutional neural networks (CNN) represent the global spatial structure, which is suitable for general scene classification and object recognition, but show poor presentation for particular indoor or outdoor medium–scale scene datasets. In this manuscript, we study the local and global structures of image scene, and then combine both types of information for indoor and outdoor scenes to improve the scene recognition accuracy. Local region structure indicates sub-part of the scene, such as sky or ground, etc., and global structure indicates whole scene structure, such as sky-background-ground outdoor scene type. For this purpose, the multi-layer convolutional features of inception and residual-based architecture are used at intermediate and higher layers to preserve both local and global structures of image scene. Each layer used for feature extraction, is connected with the global average pooling to obtain a discriminative representation of the image scenes. In this way, local structure is explored at the intermediate convolutional layers, and global spatial structure is obtained from the higher layers. The proposed method is evaluated on 8-scene, 15-scene, UMC-21, MIT67, and 12-scene challenging datasets achieving 98.51%, 96.49%, 99.05%, 80.31%, and 84.88%, respectively, significantly outperforming state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Anderson CH, Van Essen DC, Olshausen BA (2005) CHAPTER 3 - directed visual attention and the dynamic control of information flow. In: Itti L, Rees G, Tsotsos JK (eds) Neurobiology of attention. Academic Press, Burlington, pp 11–17

    Chapter  Google Scholar 

  2. Richards W, Jepson A, Feldman J (1996) Priors, preferences and categorical percepts. In: David CK, Whitman R (eds) Perception as Bayesian inference. Cambridge University Press, pp 93–122

    Chapter  Google Scholar 

  3. Ansari GJ et al (2021) A non-blind Deconvolution semi pipelined approach to understand text in blurry natural images for edge intelligence. Inf Process Manag 58(6):102675

    Article  Google Scholar 

  4. Masood H et al (2022) Recognition and tracking of objects in a clustered remote scene environment. Comput Mater Contin 70(1):1699–1719

    Google Scholar 

  5. Nedovic V et al (2010) Stages as models of scene geometry. IEEE Trans Pattern Anal Mach Intell 32(9):1673–1687

    Article  Google Scholar 

  6. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    Article  MATH  Google Scholar 

  7. Khan A, Chefranov A, Demirel H (2020) Texture gradient and deep features fusion-based image scene geometry identification system using extreme learning machine. In: 2020 3rd international conference of intelligent robotic and control engineering (IRCE). University of Oxford, UK

    Google Scholar 

  8. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR'06)

    Google Scholar 

  9. Yang Y, Newsam S (2010) Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems. ACM, San Jose, pp 270–279

    Chapter  Google Scholar 

  10. Lou Z, Gevers T, Hu N (2015) Extracting 3D layout from a single image using global image structures. IEEE Trans Image Process 24(10):3098–3108

    Article  MathSciNet  MATH  Google Scholar 

  11. Khan A, Chefranov A, Demirel H (2020) Image-level structure recognition using image features, templates, and ensemble of classifiers. Symmetry 12(7):1072

    Article  Google Scholar 

  12. Sanchez J et al (2013) Image classification with the fisher vector: theory and practice. Int J Comput Vis 105(3):222–245

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng X et al (2018) Scene recognition with objectness. Pattern Recogn 74:474–487

    Article  Google Scholar 

  14. Zou J et al (2016) Scene classification using local and global features with collaborative representation fusion. Inf Sci 348:209–226

    Article  MathSciNet  Google Scholar 

  15. Tang P, Wang H, Kwong S (2017) G-MS2F: GoogLeNet based multi-stage feature fusion of deep CNN for scene recognition. Neurocomputing 225:188–197

    Article  Google Scholar 

  16. Liu S, Tian G, Xu Y (2019) A novel scene classification model combining ResNet based transfer learning and data augmentation with a filter. Neurocomputing 338:191–206

    Article  Google Scholar 

  17. Khan A, Chefranov A, Demirel H (2021) Image scene geometry recognition using low-level features fusion at multi-layer deep CNN. Neurocomputing 440:111–126

    Article  Google Scholar 

  18. Zafar B et al (2018) Image classification by addition of spatial information based on histograms of orthogonal vectors. PLoS One 13(6):e0198175

    Article  Google Scholar 

  19. Ali N et al (2018) A hybrid geometric spatial image representation for scene classification. PLoS One 13(9):e0203339

    Article  Google Scholar 

  20. Giveki D (2021) Scale-space multi-view bag of words for scene categorization. Multimed Tools Appl 80(1):1223–1245

    Article  Google Scholar 

  21. Meng X, Wang Z, Wu L (2012) Building global image features for scene recognition. Pattern Recogn 45(1):373–380

    Article  Google Scholar 

  22. Yuan L et al (2015) Improve scene classification by using feature and kernel combination. Neurocomputing 170:213–220

    Article  Google Scholar 

  23. Ghalyan IFJ (2020) Estimation of ergodicity limits of bag-of-words modeling for guaranteed stochastic convergence. Pattern Recogn 99:107094

    Article  Google Scholar 

  24. Zhou L, Zhou Z, Hu D (2013) Scene classification using a multi-resolution bag-of-features model. Pattern Recogn 46(1):424–433

    Article  Google Scholar 

  25. Lin G et al (2017) Visual feature coding based on heterogeneous structure fusion for image classification. Inf Fusion 36(C):275–283

    Article  Google Scholar 

  26. Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision

    Google Scholar 

  27. Hussain, N., et al. Intelligent deep learning and improved whale optimization algorithm based framework for object recognition. 2021

    Google Scholar 

  28. Özyurt F, Sert E, Avcı D (2020) An expert system for brain tumor detection: fuzzy C-means with super resolution and convolutional neural network with extreme learning machine. Med Hypotheses 134:109433

    Article  Google Scholar 

  29. Khan MA et al (2021) A resource conscious human action recognition framework using 26-layered deep convolutional neural network. Multimed Tools Appl 80(28):35827–35849

    Article  Google Scholar 

  30. Kwon Y-H, Shin S-B, Kim S-D (2018) Electroencephalography based fusion two-dimensional (2D)-convolution neural networks (CNN) model for emotion recognition system. Sensors (Basel, Switzerland) 18(5):1383

    Article  Google Scholar 

  31. Khan S et al (2021) Human action recognition: a paradigm of best deep learning features selection and serial based extended fusion. Sensors (Basel) 21(23)

  32. Deng J et al (2009) ImageNet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition

    Google Scholar 

  33. Szegedy C et al (2015) Going deeper with convolutions, pp 1–9

  34. Liu S, Deng W (2015) Very deep convolutional neural network based image classification using small training sample size. In: 2015 3rd IAPR Asian conference on pattern recognition (ACPR)

    Google Scholar 

  35. He K et al (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  36. Zhou B et al (2018) Places: a 10 million image database for scene recognition. IEEE Trans Pattern Anal Mach Intell 40(6):1452–1464

    Article  Google Scholar 

  37. Azhar I, Sharif M, Raza M, Khan MA, Yong H-S (2021) Decision support system for face sketch synthesis using deep learning and artificial intelligence. Sensors 21:8178. https://doi.org/10.3390/s21248178

    Article  Google Scholar 

  38. Saleem F et al (2021) Human gait recognition: a single stream optimal deep learning features fusion. Sensors (Basel) 21(22):7584

    Article  Google Scholar 

  39. Wang C, Peng G, De Baets B (2020) Deep feature fusion through adaptive discriminative metric learning for scene recognition. Inf Fusion 63:1–12

    Article  Google Scholar 

  40. Liu B et al (2015) Learning a representative and discriminative part model with deep convolutional features for scene recognition. In: Computer vision -- ACCV 2014. Springer International Publishing, Cham

    Google Scholar 

  41. Wang C, Peng G, Lin W (2021) Robust local metric learning via least square regression regularization for scene recognition. Neurocomputing 423:179–189

    Article  Google Scholar 

  42. Yu W et al (2017) Exploiting the complementary strengths of multi-layer CNN features for image retrieval. Neurocomputing 237:235–241

    Article  Google Scholar 

  43. Herranz L, Jiang S, Li X (2016) Scene recognition with CNNs: objects, scales and dataset Bias. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  44. Szegedy C et al (2017) Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Proceedings of the thirty-first AAAI conference on artificial intelligence. AAAI Press, San Francisco, pp 4278–4284

    Google Scholar 

  45. Alex K, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Information Process Syst:1097–1105

  46. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  47. He M et al (2010) Performance evaluation of score level fusion in multimodal biometric systems. Pattern Recogn 43(5):1789–1800

    Article  MathSciNet  MATH  Google Scholar 

  48. Kittler J et al (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226–239

    Article  Google Scholar 

  49. Kotsiantis SB, Zaharakis ID, Pintelas PE (2006) Machine learning: a review of classification and combining techniques. Artif Intell Rev 26(3):159–190

    Article  Google Scholar 

  50. Quattoni A, Torralba A (2009) Recognizing indoor scenes. In: 2009 IEEE conference on computer vision and pattern recognition

    Google Scholar 

  51. Hoiem D, Efros AA, Hebert M (2007) Recovering surface layout from an image. Int J Comput Vis 75(1):151–172

    Article  MATH  Google Scholar 

  52. Khan SH et al (2016) A discriminative representation of convolutional features for indoor scene recognition. IEEE Trans Image Process 25(7):3372–3383

    Article  MathSciNet  MATH  Google Scholar 

  53. Hayat M et al (2016) A spatial layout and scale invariant feature representation for indoor scene classification. IEEE Trans Image Process 25(10):4829–4841

    Article  MathSciNet  MATH  Google Scholar 

  54. Geusebroek J-M, Smeulders AWM (2005) A six-stimulus theory for stochastic texture. Int J Comput Vis 62(1):7–16

    Article  Google Scholar 

  55. Geusebroek J-M, Smeulders AWM, van de Weijer J (2002) Fast anisotropic gauss filtering. In: Computer vision — ECCV 2002. Springer Berlin Heidelberg, Berlin

    Google Scholar 

  56. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05)

    Google Scholar 

  57. Xiao J et al (2010) SUN database: Large-scale scene recognition from abbey to zoo. In: 2010 IEEE computer society conference on computer vision and pattern recognition. IEEE, San Francisco

    Google Scholar 

  58. Zafar B et al (2018) Intelligent image classification-based on spatial weighted histograms of concentric circles. Comput Sci Inf Syst 15:615–633

    Article  Google Scholar 

  59. LeCun Y et al (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551

    Article  Google Scholar 

  60. Lecun Y et al (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  61. Simonyan K,Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 http://arxiv.org/abs/1409.1556

  62. Szegedy C et al (2015) Going deeper with convolutions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  63. Patalas M, Halikowski (2019) A model for generating workplace procedures using a CNN-SVM architecture. Symmetry 11(9):1151

    Article  Google Scholar 

  64. LeCun Y, Cortes C, Burges CJ (2010) [online] MNIST hand-written digit database. AT&T Labs

    Google Scholar 

  65. Guang-Bin H, Qin-Yu Z, Chee-Kheong S (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE international joint conference on neural networks (IEEE cat. No.04CH37541)

    Google Scholar 

  66. Yu Y, Liu F (2018) A two-stream deep fusion framework for high-resolution aerial scene classification. Comput Intell Neurosci 2018:8639367

    Article  Google Scholar 

  67. Khan A et al (2021) White blood cell type identification using multi-layer convolutional features with an extreme-learning machine. Biomed Signal Process Control 69:102932

    Article  Google Scholar 

  68. Liang G et al (2018) Combining convolutional neural network with recursive neural network for blood cell image classification. IEEE Access 6:36188–36197

    Article  Google Scholar 

  69. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd international conference on international conference on machine learning - volume 37. JMLR.org, Lille, pp 448–456

    Google Scholar 

  70. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Article  MATH  Google Scholar 

  71. Eitrich T, Lang B (2006) Efficient optimization of support vector machine learning parameters for unbalanced datasets. J Comput Appl Math 196(2):425–436

    Article  MathSciNet  MATH  Google Scholar 

  72. Mohareb F et al (2016) Ensemble-based support vector machine classifiers as an efficient tool for quality assessment of beef fillets from electronic nose data. Anal Methods 8(18):3711–3721

    Article  Google Scholar 

  73. Tulyakov S et al (2008) Review of classifier combination methods. In: Marinai S, Fujisawa H (eds) Machine learning in document analysis and recognition. Springer Berlin Heidelberg, Berlin, pp 361–386

    Chapter  Google Scholar 

  74. Liu C-L (2005) Classifier combination based on confidence transformation. Pattern Recogn 38(1):11–28

    Article  MATH  Google Scholar 

  75. Tax DMJ et al (2000) Combining multiple classifiers by averaging or by multiplying? Pattern Recogn 33(9):1475–1485

    Article  Google Scholar 

  76. Rosset S (2004) Model selection via the AUC. In: Proceedings of the twenty-first international conference on machine learning. ACM, Banff, p 89

    Google Scholar 

  77. Sun H et al (2017) Scene classification with the discriminative representation. In: 2017 2nd international conference on multimedia and image processing (ICMIP)

    Google Scholar 

  78. Liu B, Liu J, Lu H (2015) Learning representative and discriminative image representation by deep appearance and spatial coding. Comput Vis Image Underst 136:23–31

    Article  Google Scholar 

  79. Hu F et al (2015) Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens 7(11):14680–14707

    Article  Google Scholar 

  80. Ma C, Mu X, Sha D (2019) Multi-layers feature fusion of convolutional neural network for scene classification of remote sensing. IEEE Access 7:121685–121694

    Article  Google Scholar 

  81. Wu H et al (2020) Self-attention network with joint loss for remote sensing image scene classification. IEEE Access 8:210347–210359

    Article  Google Scholar 

  82. Wang X et al (2020) Remote sensing scene classification using heterogeneous feature extraction and multi-level fusion. IEEE Access 8:217628–217641

    Article  Google Scholar 

  83. Wu J, Lin Z, Zha H (2019) Essential tensor learning for multi-view spectral clustering. IEEE Trans Image Process 28(12):5910–5922

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Altaf Khan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Chefranov, A. & Demirel, H. Building discriminative features of scene recognition using multi-stages of inception-ResNet-v2. Appl Intell 53, 18431–18449 (2023). https://doi.org/10.1007/s10489-023-04460-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04460-4

Keywords

Navigation