Skip to main content
Log in

An improved sine cosine algorithm with heterogeneous subpopulations for global optimization and fractional order PID controller design

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

As one of recently proposed optimization algorithm, sine cosine algorithm (SCA) suffers from the problems of skipping over true solutions, stagnating in local optima and premature convergence. Therefore, an improved sine cosine algorithm with heterogeneous subpopulations (HSISCA) is developed in this paper. The population of HSISCA is divided into two subpopulations which comply with different search mechanisms and information sharing rules. One subpopulation is specified to enhance exploration by incorporating Levy flight and random search guidance into SCA, while the other is specified to enhance exploitation by adaptive differential mutation operator. The exploration subpopulation is denied access to the information of exploitation subpopulation, but the exploitation subpopulation is allowed access to the information of exploration subpopulation. Moreover, the greedy selection is applied to each individual to preserve useful information. HSISCA is tested on the CEC2014 and CEC2017 benchmark functions, and is used for designing fractional order PID (FOPID) controller. The results confirm the better performance of HSISCA compared to other competitive algorithms, and demonstrate the effectiveness of HSISCA in designing FOPID controller for complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Srinivas M, Patnaik LM (1994) Genetic algorithms: a survey. Computer 27(6):17–26

    Article  Google Scholar 

  2. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of international conference on neural networks, ICNN’95. IEEE, pp 1942–1948

  3. Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  4. Dorigo M, Caro GD (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation, CEC’99. IEEE, pp 1470–1477

  5. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  6. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  7. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  8. Yang XS, Suash D (2009) Cuckoo search via Lévy flights. In: Proceedings of 2009 world congress on nature & biologically inspired computing, NaBIC’09. IEEE, pp 210–214

  9. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  10. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Design 43(3):303–315

    Article  Google Scholar 

  11. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  12. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  13. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Article  Google Scholar 

  14. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Article  Google Scholar 

  15. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  16. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84

    Article  Google Scholar 

  17. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  18. Heidaria AA, Mirjalilib S, Farisc H, Aljarahc I, Mafarjad M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comp Sy 97:849–872

    Article  Google Scholar 

  19. Alsattar HA, Zaidan AA, Zaidan BB (2020) Novel meta-heuristic bald eagle search optimisation algorithm. Artif Intell Rev 53:2237–2264

    Article  Google Scholar 

  20. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl Based Syst 191:105190

    Article  Google Scholar 

  21. Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152:113377

    Article  Google Scholar 

  22. Qais MH, Hasanien HM, Alghuwainem S (2020) Transient search optimization: a new meta-heuristic optimization algorithm. Appl Intell 50:3926–3941

    Article  Google Scholar 

  23. Hashim FA, Hussain K, Houssein EH, Mai MS, Al-Atabany W (2021) Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell 51:1531–1551

    Article  MATH  Google Scholar 

  24. Abualigah L, Yousri D, Elaziz MA, Ewees AA, Al-qaness MAA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250

    Article  Google Scholar 

  25. Abdollahzadeh B, Gharehchopogh FS, Mirjalili S (2021a) African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems. Comput Ind Eng 158:107408

    Article  Google Scholar 

  26. Abdollahzadeh B, Gharehchopogh FS, Mirjalili S (2021b) Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Int J Intell Syst 36 (10):5887–5958

    Article  Google Scholar 

  27. Zhao W, Wang L, Mirjalili S (2022) Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications. Comput Methods Appl Mech Eng 388:114194

    Article  MathSciNet  MATH  Google Scholar 

  28. Hashim FA, Houssein EH, Hussain K, Mabrouk MS, Al-Atabany W (2022) Honey badger algorithm: new metaheuristic algorithm for solving optimization problems. Math Comput Simul 192:84–110

    Article  MathSciNet  MATH  Google Scholar 

  29. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  30. Li S, Fang H, Liu X (2018) Parameter optimization of support vector regression based on sine cosine algorithm. Expert Syst Appl 91:63–77

    Article  Google Scholar 

  31. Das S, Bhattacharya A, Chakraborty AK (2018) Solution of short-term hydrothermal scheduling using sine cosine algorithm. Soft Comput 22:6409–6427

    Article  MATH  Google Scholar 

  32. Attia AF, Sehiemy RAE, Hasanien HM (2018) Optimal power flow solution in power systems using a novel sine-cosine algorithm. Int J Elec Power 99:331–343

    Article  Google Scholar 

  33. Abdelsalam AA, Mansour HSE (2019) Optimal allocation and hourly scheduling of capacitor banks using sine cosine algorithm for maximizing technical and economic benefits. Electr Pow Compo Sys 47 (11-12):1025–1039

    Article  Google Scholar 

  34. Bhookya J, Jatoth RK (2019) Optimal FOPID/PID controller parameters tuning for the AVR system based on sine-cosine-algorithm. Evol Intell 12:725–733

    Article  Google Scholar 

  35. Dasgupta K, Roy PK, Mukherjee V (2020) Power flow based hydro-thermal-wind scheduling of hybrid power system using sine cosine algorithm. Electr Pow Syst Res 178:106018

    Article  Google Scholar 

  36. Dasgupta K, Roy PK, Mukherjee V (2022) Solution of short term integrated hydrothermal-solar-wind scheduling using sine cosine algorithm. Energy Strateg Rev 40:100824

    Article  Google Scholar 

  37. Gabis AB, Meraihi Y, Mirjalili S, Ramdane-Cherif A (2021) A comprehensive survey of sine cosine algorithm: variants and applications. Artif Intell Rev 54:5469–5540

    Article  Google Scholar 

  38. Elaziz MA, Oliva D, Xiong S (2017) An improved opposition-based sine cosine algorithm for global optimization. Expert Syst Appl 90:484–500

    Article  Google Scholar 

  39. Singh N, Singh SB (2017) A novel hybrid GWO-SCA approach for optimization problems. Eng Sci Technol 20(6):1586–1601

    Google Scholar 

  40. Nenavath H, Jatoth DK, Das DS (2018) A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking. Swarm Evol Comput 43:1–30

    Article  Google Scholar 

  41. Nenavath H, Jatoth RK (2018) Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl Soft Comput 62:1019–1043

    Article  Google Scholar 

  42. Nenavath H, Jatoth RK (2019) Hybrid SCA-TLBO: a novel optimization algorithm for global optimization and visual tracking. Neural Comput Appl 31:5497–5526

    Article  Google Scholar 

  43. Rizk-Allah RM (2018) Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems. J Comput Des Eng 5(2):249–273

    MathSciNet  Google Scholar 

  44. Rizk-Allah RM (2019) An improved sine-cosine algorithm based on orthogonal parallel information for global optimization. Soft Comput 23:7135–7161

    Article  Google Scholar 

  45. Chegini SN, Bagheri A, Najafi F (2018) PSOSCALF: a new hybrid PSO based on sine cosine algorithm and Levy flight for solving optimization problems. Appl Soft Comput 73:697–726

    Article  Google Scholar 

  46. Issa M, Hassanien AE, Oliva D, Helmi A, Ziedan I, Alzohairy A (2018) ASCA-PSO: adaptive Sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment. Expert Syst Appl 99:56–70

    Article  Google Scholar 

  47. Guo W, Wang Y, Zhao F, Dai F (2019) Riesz fractional derivative elite-guided sine cosine algorithm. Appl Soft Comput 81:105481

    Article  Google Scholar 

  48. Long W, Wu T, Liang X, Xu S (2019) Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Syst Appl 123:108–126

    Article  Google Scholar 

  49. Gupta S, Deep K (2019a) A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Syst Appl 119:210–230

    Article  Google Scholar 

  50. Gupta S, Deep K (2019b) Improved sine cosine algorithm with crossover scheme for global optimization. Knowl Based Syst 165:374–406

    Article  Google Scholar 

  51. Gupta S, Deep K (2020a) Hybrid sine cosine artificial bee colony algorithm for global optimization and image segmentation. Neural Comput Appl 32:9521–9543

    Article  Google Scholar 

  52. Gupta S, Deep K (2020b) A novel hybrid sine cosine algorithm for global optimization and its application to train multilayer perceptrons. Appl Intell 50:993–1026

    Article  Google Scholar 

  53. Gupta S, Deep K, Engelbrecht AP (2020) A memory guided sine cosine algorithm for global optimization. Eng Appl Artif Intell 93:103718

    Article  Google Scholar 

  54. Gupta S, Deep K, Mirjalili S, Kim JH (2020) A modified sine cosine algorithm with novel transition parameter and mutation operator for global optimization. Expert Syst Appl 154:113395

    Article  Google Scholar 

  55. Feng Z, Liu S, Niu W, Li B, Wang W, Luo B, Miao S (2020) A modified sine cosine algorithm for accurate global optimization of numerical functions and multiple hydropower reservoirs operation. Knowl Based Syst 208:106461

    Article  Google Scholar 

  56. Li N, Wang L (2020) Bare-bones based sine cosine algorithm for global optimization. J Comput Sci 47:101219

    Article  MathSciNet  Google Scholar 

  57. Guo W, Wang Y, Dai F, Xu P (2020) Improved sine cosine algorithm combined with optimal neighborhood and quadratic interpolation strategy. Eng Appl Artif Intell 94:103779

    Article  Google Scholar 

  58. Li Y, Zhao Y, Liu J (2021) Dimension by dimension dynamic sine cosine algorithm for global optimization problems. Appl Soft Comput 98:106933

    Article  Google Scholar 

  59. Feng Z, Niu W, Liu S, Luo B, Miao S, Liu K (2020) Multiple hydropower reservoirs operation optimization by adaptive mutation sine cosine algorithm based on neighborhood search and simplex search strategies. J Hydrol 590:125223

    Article  Google Scholar 

  60. Chen H, Wang M, Zhao X (2020) A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Appl Math Comput 369:124872

    MathSciNet  MATH  Google Scholar 

  61. Fan Y, Wang P, Heidari AA, Wang M, Zhao X, Chen H, Li C (2020) Rationalized fruit fly optimization with sine cosine algorithm: a comprehensive analysis. Expert Syst Appl 157:113486

    Article  Google Scholar 

  62. Khalilpourazari S, Pasandideh SHR (2020) Sine-cosine crow search algorithm: theory and applications. Neural Comput Appl 32:7725–7742

    Article  Google Scholar 

  63. Raut U, Mishra S (2020) An improved sine-cosine algorithm for simultaneous network reconfiguration and DG allocation in power distribution systems. Appl Soft Comput 92:106293

    Article  Google Scholar 

  64. Hassan BA (2021) CSCF: a chaotic sine cosine firefly algorithm for practical application problems. Neural Comput Appl 33:7011–7030

    Article  Google Scholar 

  65. Hussain K, Neggaz N, Zhu W, Houssein EH (2021) An efficient hybrid sine-cosine harris hawks optimization for low and high-dimensional feature selection. Expert Syst Appl 176:114778

    Article  Google Scholar 

  66. Lynn N, Suganthan PN (2015) Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol Comput 24:11–24

    Article  Google Scholar 

  67. Yang XS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40(6):1616–1624

    Article  MathSciNet  MATH  Google Scholar 

  68. Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Technical report, computational intelligence laboratory Zhengzhou University. Zhengzhou China, and Nanyang Technological University, Singapore

  69. Awad NH, Ali MZ, Suganthan PN, Liang JJ, Qu BY (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technical Report, Nanyang Technological University, Singapore and Jordan University of Science and Technology, Jordan, and Zhengzhou University, Zhengzhou China

  70. Oustaloup A, Levron F, Mathieu B, Nanot FM (2000) Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans Circuits Syst I Fund Theory Appl 47(1):25–39

    Article  Google Scholar 

  71. Gaidhane PJ, Nigam MJ (2018) A hybrid grey wolf optimizer and artificial bee colony algorithm forenhancing the performance of complex systems. J Comput Sci 27:284–302

    Article  Google Scholar 

  72. Kumar A, Kumar V (2017) A novel interval type-2 fractional order fuzzy PID controller: design, performance evaluation, and its optimal time domain tuning. ISA Trans 68:251–275

    Article  Google Scholar 

  73. Mudi RK, Pal NR (1999) A robust self-tuning scheme for PI- and PD-type fuzzy controllers. IEEE Trans Fuzzy Syst 7(1):2–16

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Gansu Province (Grant No. 21JR7RE181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Gong.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Ning, H. & Gong, J. An improved sine cosine algorithm with heterogeneous subpopulations for global optimization and fractional order PID controller design. Appl Intell 53, 18581–18604 (2023). https://doi.org/10.1007/s10489-023-04473-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04473-z

Keywords

Navigation