Skip to main content
Log in

Deep learning in medical image super resolution: a review

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Super-resolution (SR) reconstruction is a hot topic in medical image processing. SR implies reconstructing corresponding high-resolution (HR) images from observed low-resolution (LR) images or image sequences. In recent years, significant breakthroughs in SR based on deep learning have been made, and many advanced results have been achieved. However, there is a lack of review literature that summarizes the field’s current state and provides an outlook on future developments. Therefore, we provide a comprehensive summary of the literature on medical image SR (MedSR) based on deep learning since 2018 in five aspects: (1) The SR problem of medical images is described, and the methods of image degradation are summarized. (2) We divide the existing studies into three categories: two-dimensional image SR (2DISR), three-dimensional image SR (3DISR), and video SR (VSR). Each category is subdivided. We analyze the network structure and method characteristics of typical methods. (3) Existing SR reconstruction quality evaluation metrics are presented in detail. (4) The application of MedSR methods based on deep learning is discussed. (5) We discuss the challenges of this phase and point out valuable research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Azadbakht J, Khoramian D, Lajevardi ZS, Elikaii F et al (2021) A review on chest CT scanning parameters implemented in COVID-19 patients: bringing low-dose CT protocols into play. J Radiol Nucl Med 52(1):1–10. https://doi.org/10.1186/s43055-020-00400-1

    Google Scholar 

  2. Xia Y, Ravikumar N, Greenwood JP et al (2021) Super resolution of cardiac MR cine imaging using conditional GANs and unsupervised transfer learning. Med Image Anal 71:102037. https://doi.org/10.1016/j.media.2021.102037

    Google Scholar 

  3. Li Y, Sixou B, Peyrin F (2021) A review of the deep learning methods for medical images super resolution problems. Irbm 42(2):120–133. https://doi.org/10.1016/j.irbm.2020.08.004

    Google Scholar 

  4. Rohith G, Kumar LS (2021) Paradigm shifts in super-resolution techniques for remote sensing applications. Vis Comput 37(7):1965–2008. https://doi.org/10.1007/s00371-020-01957-8

    Google Scholar 

  5. Shang T, Dai Q, Zhu S et al (2020) Perceptual extreme super-resolution network with receptive field block. IEEE/CVF conference on computer vision and pattern recognition workshops (CCPRW), pp 440–441

  6. Lyakhov PA, Valuev GV, Valueva MV et al (2021) Single image Super-Resolution method based on bilinear interpolation and U-Net combination. Mediterranean Conference on Embedded Computing (MECO), pp 1–4

  7. Xiang R, Yang H, Yan Z et al (2022) Super-resolution reconstruction of GOSAT CO2 products using bicubic interpolation. Geocarto International, pp 1–25

  8. Lin Z, Shum HY (2004) Fundamental limits of reconstruction-based super resolution algorithms under local translation. IEEE Trans Pattern Anal Mach Intell 26(1):83–97. https://doi.org/10.1109/TPAMI.2004.10003

    Google Scholar 

  9. Ebner M, Patel P, Atkinson D et al (2019) Reconstruction-based super-resolution for high-resolution abdominal MRI: a preliminary study. International Society for Magnetic Resonance in Medicine (ISMRM), pp 1–3

  10. Shao Z, Wang L, Wang Z et al (2019) Remote sensing image super-resolution using sparse representation and coupled sparse autoencoder. IEEE J Sel Top Appl Earth Obs Remote Sens 12(8):2663–2674

    Google Scholar 

  11. Deka B, Datta S, Mullah HU et al (2020) Diffusion-weighted and spectroscopic MRI super-resolution using sparse representations. Biomed Signal Process Control 60(5):101941. https://doi.org/10.1016/j.bspc.2020.101941

    Google Scholar 

  12. Li Y, Song B, Guo J et al (2019) Super-resolution of brain MRI images using overcomplete dictionaries and nonlocal similarity. IEEE Access 7:25897–25907. https://doi.org/10.1109/ACCESS.2019.2900125

    Google Scholar 

  13. Chao D, Chen CL, He K et al (2014) Learning a deep convolutional network for image Super-Resolution. European Conference on Computer Vision (ECCV), pp 184–199. https://doi.org/10.1007/978-3-319-10593-2_13

  14. Yang F, Yang H, Fu J et al (2020) Learning texture transformer network for image super-resolution. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 5791–5800. https://doi.org/10.1109/CVPR42600.2020.00583

  15. Liu H, Ruan Z, Zhao P et al (2022) Video super-resolution based on deep learning: a comprehensive survey. Artif Intell Rev 55:5981–6035. https://doi.org/10.1007/s10462-022-10147-y

    Google Scholar 

  16. Wang Z, Chen J, Hoi S (2020) Deep Learning for Image super-resolution: A Survey. IEEE Trans Pattern Anal Mach Intell 43(10):3365–3387. https://doi.org/10.1109/TPAMI.2020.2982166

    Google Scholar 

  17. Chen Z, Pawar K, Ekanayake M et al (2022) Deep learning for image enhancement and correction in magnetic resonance imaging—state-of-the-art and challenges. J Digit Imaging, pp 1–27. https://doi.org/10.1007/s10278-022-00721-9

  18. Zheng Y, Zhen B, Chen A (2020) A hybrid convolutional neural network for super-resolution reconstruction of MR images. Med Phys 47(7):3013–3022. https://doi.org/10.1002/mp.14152

    Google Scholar 

  19. Park S, Gach HM, Kim S et al (2021) Autoencoder-inspired convolutional network-based super-resolution method in MRI. IEEE J Transl Eng Health Med 9:1–13. https://doi.org/10.1109/JTEHM.2021.3076152

    Google Scholar 

  20. Zhang K, Gool LV, Timofte R (2020) Deep unfolding network for image super-resolution. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 3214–3223. https://doi.org/10.1109/CVPR42600.2020.00328

  21. Song H, Xu W, Liu D et al (2021) Multi-Stage feature fusion network for video super-resolution. IEEE Trans Image Process 30:2923–2934. https://doi.org/10.1109/TIP.2021.3056868

    Google Scholar 

  22. Masutani EM, Naeim B, Albert H (2020) Deep learning single-frame and multi-frame super-resolution for cardiac MRI. Radiology 295(3):552–561. https://doi.org/10.1148/radiol.2020192173

    Google Scholar 

  23. Lyu Q, Shan H, Steber C et al (2020) Multi-contrast super-resolution MRI through a progressive network. IEEE Trans Med Imaging 39(9):2738–2749. https://doi.org/10.1109/TMI.2020.2974858

    Google Scholar 

  24. Lin JY, Chang YC, Hsu WH (2020) Efficient and phase-aware video super-resolution for Cardiac MRI. In: Medical image computing and computer-assisted intervention (MICCAI), pp 66–76. https://doi.org/10.1007/978-3-030-59719-1_7

  25. Lyu Q, Shan H, Wang G (2020) MRI super-resolution with ensemble learning and complementary priors. IEEE Trans Comput Imaging 6:615–624. https://doi.org/10.1109/TCI.2020.2964201

    Google Scholar 

  26. Lyu Q, Shan H, Xie Y et al (2021) Cine cardiac MRI motion artifact reduction using a recurrent neural network. IEEE Trans Med Imaging 40(8):2170–2181. https://doi.org/10.1109/TMI.2021.3073381

    Google Scholar 

  27. Sander J, Vos BD, Igum I (2022) Autoencoding Low-Resolution MRI for semantically smooth interpolation of anisotropic MRI. Med Image Anal 78:102393. https://doi.org/10.1016/j.media.2022.102393

    Google Scholar 

  28. Li J, Koh JC, Lee WS (2020) HRINEt: Alternative supervision network for high-resolution CT image interpolation. IEEE International Conference on Image Processing(ICIP), pp 1916–1920. https://doi.org/10.1109/ICIP40778.2020.9191060

  29. Lu Z, Li Z, Wang J et al (2021) Two-Stage self-supervised cycle-consistency network for reconstruction of thin-slice MR images. https://doi.org/10.1007/978-3-030-87231-1_1

  30. Wang L, Zhu H, He Z et al (2022) Adjacent slices feature transformer network for single anisotropic 3D brain MRI image super-resolution. Biomed Signal Process Control 72:103339. https://doi.org/10.1016/j.bspc.2021.103339

    Google Scholar 

  31. Lepcha DC, Goyal B, Dogra A et al (2023) Image super-resolution: a comprehensive review, recent trends, challenges and applications. Inform Fusion 91:230–260. https://doi.org/10.1016/j.inffus.2022.10.007

    Google Scholar 

  32. Nie S, Ma C, Chen D et al (2020) A dual residual network with channel attention for image restoration. European Conference on Computer Vision Workshops(ECCVW), pp 352–363. https://doi.org/10.1007/978-3-030-68238-5_27

  33. Liu J, Tang J, Wu G (2020) Residual feature distillation network for lightweight image Super-Resolution. European Conference on Computer Vision Workshops(ECCVW), pp 41–55. https://doi.org/10.1007/978-3-030-67070-2_2

  34. Song D, Xu C, Jia X et al (2020) Efficient residual dense block search for image Super-Resolution. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 34, pp 2007–12014. https://doi.org/10.1609/aaai.v34i07.6877

  35. Zhang Y, Tian Y, Kong Y et al (2020) Residual dense network for image restoration. IEEE Trans Pattern Anal Mach Intell(PAMI) 43(7):2480–2495. https://doi.org/10.1109/TPAMI.2020.2968521

    Google Scholar 

  36. Shuang LA, Cxa B, Xs A et al (2021) Progressive face super-resolution with cascaded recurrent convolutional network. Neurocomputing 449:357–367. https://doi.org/10.1016/j.neucom.2021.03.124

    Google Scholar 

  37. Hui Z, Li J, Gao X et al (2021) Progressive perception-oriented network for single image super-resolution. Inf Sci 546(2):769–786. https://doi.org/10.1016/j.ins.2020.08.114

    MathSciNet  Google Scholar 

  38. Hu X, Naiel MA, Wong A et al (2019) RUNEt: A robust Unet architecture for image super-resolution. Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 505–507. https://doi.org/10.1109/CVPRW.2019.00073

  39. Yan Y, Liu C, Chen C et al (2021) Fine-grained attention and feature-sharing generative adversarial networks for single image super-resolution. IEEE Trans Multimedia 24:1473–1487. https://doi.org/10.1109/TMM.2021.3065731

    Google Scholar 

  40. Hui Z, Gao X, Yang Y et al (2019) Lightweight image super-resolution with information multi-distillation network. Acm International Conference(ACM), pp 2024–2032. https://doi.org/10.1145/3343031.3351084

  41. Chudasama V, Nighania K, Upla K et al (2021) E-comsupresnet: enhanced face super-resolution through compact network. IEEE Trans Biom Behav Identity Sci 3(2):166–179. https://doi.org/10.1109/TBIOM.2021.3059196

    Google Scholar 

  42. Chen C, Gong D, Wang H et al (2021) Learning spatial attention for face Super-Resolution. IEEE Trans Image Process 30:1219–1231. https://doi.org/10.1109/TIP.2020.3043093

    Google Scholar 

  43. Guo Y, Chen J, Wang J et al (2020) Closed-loop matters: dual regression networks for single image super-resolution. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 5406–5415. https://doi.org/10.1109/CVPR42600.2020.00545

  44. Wang H, Hu Q, Wu C et al (2021) DCLNEt: Dual closed-loop networks for face super-resolution. Knowl Based Syst 222(33):106987. https://doi.org/10.1016/j.knosys.2021.106987

    Google Scholar 

  45. Li J, Fang F, Mei K et al (2018) Multi-scale residual network for image super-resolution. In: Proceedings of the 15th European Conference on Computer Vision (ECCV), pp 517–532. https://doi.org/10.1007/978-3-030-01237-3_32

  46. Kim J, Lee JK, Lee KM (2016) Accurate image Super-Resolution using very deep convolutional networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1646–1654. https://doi.org/10.1109/CVPR.2016.182

  47. Xue X, Wang Y, Li J et al (2020) Progressive sub-band residual-learning network for MR image super resolution. IEEE J Biomed Health Informa 24(2):377–386. https://doi.org/10.1109/JBHI.2019.2945373

    Google Scholar 

  48. He K, Zhang X, Ren S et al (2016) Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  49. Qiu D, Zheng L, Zhu J et al (2021) Multiple improved residual networks for medical image super-resolution. Futur Gener Comput Syst 116:200–208. https://doi.org/10.1016/j.future.2020.11.001

    Google Scholar 

  50. Ding P, Li Z, Zhou Y et al (2019) Deep residual dense U-Net for resolution enhancement in accelerated MRI acquisition. Image Processing, pp 110–117

  51. Zheng H, Wang X, Gao X (2018) Fast and accurate single image super-resolution via information distillation network. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 723–731. https://doi.org/10.1109/CVPR.2018.00082

  52. Chen Y, Zheng Q, Chen J (2022) Double paths network with residual information distillation for improving lung CT image super resolution. Biomed Signal Process Control 73:103412. https://doi.org/10.1016/j.bspc.2021.103412

    Google Scholar 

  53. Ledig C, Theis L, Huszar F et al (2017) Photo-Realistic Single image Super-Resolution using a generative adversarial network. Computer Vision and Pattern Recognition (CVPR), pp 105–114. https://doi.org/10.1109/CVPR.2017.19

  54. Wang X, Yu K, Wu S et al (2018) ESRGAN: Enhanced super-resolution generative adversarial networks. European Conference on Computer Vision Workshops(ECCVW), pp 63–79. https://doi.org/10.1007/978-3-030-11021-5_5

  55. Chan KCK, Wang X, Xu X et al (2021) GLEAN: Generative latent bank for Large-Factor image Super-Resolution. IEEE conference on computer vision and pattern recognition (CVPR), pp 14240–14249

  56. Zhu J, Yang G, Lio P (2019) How can we make GAN perform better in single medical image super-resolution? a lesion focused multi-scale approach. IEEE 16th International Symposium on Biomedical Imaging (ISBI), pp 1669–1673. https://doi.org/10.1109/ISBI.2019.8759517

  57. Ren H, El-Khamy M, Lee J (2017) Image super resolution based on fusing multiple convolution neural networks. IEEE/ CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 1050–1057. https://doi.org/10.1109/CVPRW.2017.142

  58. Zhu JY, Park T, Isola P et al (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. IEEE International Conference on Computer Vision (ICCV), pp 2223–2232. https://doi.org/10.1109/ICCV.2017.244

  59. Lyu Q, You C, Shan H et al (2019) Super-resolution MRI and CT through GAN-circle. Developments in X-Ray Tomography XII 111130X:202–208. https://doi.org/10.1117/12.2530592

    Google Scholar 

  60. Mei Y, Fan Y, Zhou Y et al (2020) Image super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 5689–5698. https://doi.org/10.1109/CVPR42600.2020.00573

  61. Cai J, Meng ZB, Ho CM (2020) Residual channel attention generative adversarial network for image super-resolution and noise reduction. IEEE/ CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 1852–1861. https://doi.org/10.1109/CVPRW50498.2020.00235

  62. Mei Y, Fan Y, Zhou Y (2021) Image super-resolution with non-local sparse attention. Conference on Computer Vision and Pattern Recognition (CVPR), pp 3516–3525

  63. Li G, Lv J, Tong X et al (2021) High-Resolution Pelvic MRI reconstruction using a generative adversarial network with attention and cyclic loss. IEEE Access 105951-105964:9. https://doi.org/10.1109/ACCESS.2021.3099695

    Google Scholar 

  64. Gu Y, Zeng Z, Chen H et al (2020) MedSRGAN: medical images super-resolution using generative adversarial networks. Multimed Tools Appl 79(3):21815–21840. https://doi.org/10.1007/s11042-020-08980-w

    Google Scholar 

  65. Zhang Y, Li K, Li K et al (2018) Image super-resolution using very deep residual channel attention networks. European Conference on Computer Vision (ECCV), pp 294–310. https://doi.org/10.1007/978-3-030-01234-2_18

  66. Ashish V, Noam S, Niki P et al (2017) Attention is all you need. Neural Information Processing Systems (NIPS), pp 6000–6010

  67. Liang J, Cao J, Sun G et al (2021) SwinIR: Image Restoration Using Swin Transformer. International Conference on Computer Vision Workshops (ICCVW), pp 1833–1844. https://doi.org/10.1109/ICCVW54120.2021.00210

  68. Chu X, Tian Z, Wang Y et al (2021) Twins: Revisiting the design of spatial attention in vision transformers. Neural Inf Process Syst 34:9355–9366

    Google Scholar 

  69. Feng CM, Yan Y, Fu H et al (2021) Task transformer network for joint MRI reconstruction and super-resolution. In: Medical Image Computing and Computer Assisted Intervention (MICCAI) , pp 307–317. https://doi.org/10.1007/978-3-030-87231-1_30

  70. Zhang Z, Yu L, Liang X et al (2021) TransCT: Dual-path transformer for low dose computed tomography. In: Medical Image Computing and Computer Assisted Intervention (MICCAI), pp 55–64. https://doi.org/10.1007/978-3-030-87231-1_6

  71. Zhou S, Zhang J, Zuo W et al (2020) Cross-scale internal graph neural network for image super-resolution. Neural Inf Process Syst 33:3499–3509

    Google Scholar 

  72. Yan Y, Ren W, Hu X et al (2021) SRGAT: Single image super-resolution with graph attention network. IEEE Trans Image Process 30:4905–4918. https://doi.org/10.1109/TIP.2021.3077135

    Google Scholar 

  73. Zhang Y, Li K, Li KP et al (2021) MR Image Super-Resolution with squeeze and excitation reasoning attention network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 13420–13429

  74. Xiang L, Chen Y, Chang W et al (2019) Deep-learning-based multi-modal fusion for fast MR reconstruction. IEEE Trans Biomed Eng 66(7):2105–2114. https://doi.org/10.1109/TBME.2018.2883958

    Google Scholar 

  75. Lu L, Li W, Tao X et al (2021) MASA-SR : Matching acceleration and spatial adaptation for reference-based image super-resolution. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 6364–6373

  76. Feng CM, Fu H, Yuan S et al (2021) Multi-Contrast MRI super-resolution via a multi-stage integration network. In: Medical Image Computing and Computer Assisted Intervention (MICCAI) , pp 140–149. https://doi.org/10.1007/978-3-030-87231-1_14

  77. Feng CM, Yan Y, Chen G et al (2021) Multi-Modal Transformer for accelerated MR imaging. IEEE Trans Med Imaging, pp 1–1. https://doi.org/10.1109/TMI.2022.3180228

  78. Georgescu MI, Ionescu RT, Miron AI et al (2023) Multimodal multi-head convolutional attention with various kernel sizes for medical image super-resolution. Workshop on Applications of Computer Vision (WACV), pp 1–12

  79. Georgescu MI, Ionescu RT, Verga N (2020) Convolutional neural networks with intermediate loss for 3D super-resolution of CT and MRI scans. IEEE Access 8:49112–49124. https://doi.org/10.1109/ACCESS.2020.2980266

    Google Scholar 

  80. Lim B, Son S, Kim H et al (2017) Enhanced deep residual networks for single image Super-Resolution. IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 136–144. https://doi.org/10.1109/CVPRW.2017.151

  81. Xie Y, Xiao J, Sun M et al (2020) Feature representation matters: end to end learning for Reference-Based image super resolution. In: European Conference on Computer Vision (ECCV), pp 230–245. https://doi.org/10.1007/978-3-030-58548-8_14

  82. Li G, Lv J, Tian Y et al (2022) Transformer-empowered multi-scale contextual matching and aggregation for Multi contrast MRI super-resolution. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 20636–20645

  83. Madhu M, Ramanarayanan S, Ram K et al (2021) Reference based Texture transfer for Single Image Super-resolution of Magnetic Resonance images. IEEE International Symposium on Biomedical Imaging (ISBI), pp 579–583

  84. Liu Z, Lin Y, Cao Y et al (2021) Swin transformer: Hierarchical vision transformer using shifted windows. International Conference on Computer Vision, pp 10012–10022. https://doi.org/10.1109/ICCV48922.2021.00986

  85. Zeng K, Zheng H, Cai C et al (2018) Simultaneous single-and multi-contrast super-resolution for brain MRI images based on a convolutional neural network. Comput Biol Med 99:133–141. https://doi.org/10.1016/j.compbiomed.2018.06.010

    Google Scholar 

  86. Ji S, Xu W, Yang M et al (2013) 3D Convolutional Neural Networks for Human Action Recognition. IEEE Trans Pattern Anal Mach Intell 35 (1):221–231. https://doi.org/10.1109/TPAMI.2012.59

    Google Scholar 

  87. Koktzoglou I, Huang R, Ankenbrandt WJ et al (2021) Super-resolution head and neck MRA using deep machine learning. Magn Reson Med 86(1):335–345. https://doi.org/10.1002/mrm.28738

    Google Scholar 

  88. Chen Y, Shi F, Christodoulou AG et al (2018) Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp 91–99. https://doi.org/10.1007/978-3-030-00928-1_11

  89. Pham C-H, Ducournau A, Fablet R et al (2017) Brain MRI super-resolution using deep 3D convolutional networks. IEEE 14th International Symposium on Biomedical Imaging (ISBI), pp 197–200

  90. Kudo A, Kitamura Y, Li Y et al (2019) Virtual thin slice: 3D conditional GAN-based super-resolution for CT slice interval. In: Machine Learning for Medical Image Reconstruction (MLMIR), pp 91–100. https://doi.org/10.1007/978-3-030-33843-5_9

  91. Chen Y, Xie Y, Zhou Z et al (2018) Brain MRI super resolution using 3D deep densely connected neural networks. IEEE 15th International Symposium on Biomedical Imaging (ISBI), pp 739–742. https://doi.org/10.1109/ISBI.2018.8363679

  92. Wang J, Chen Y, Wu Y et al (2020) Enhanced generative adversarial network for 3D brain MRI super-resolution. Winter Conference on Applications of Computer Vision (WACV), pp 3627–3636. https://doi.org/10.1109/WACV45572.2020.9093603

  93. Du J, He Z, Wang L et al (2020) Super-resolution reconstruction of single anisotropic 3D MR images using residual convolutional neural network. Neurocomputing 392:209–220. https://doi.org/10.1016/j.neucom.2018.10.102

    Google Scholar 

  94. Peng C, Lin WA, Liao H et al (2020) SAINT: Spatially aware interpolation network for medical slice synthesis. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 7750–7759. https://doi.org/10.1109/CVPR42600.2020.00777

  95. Peng C, Zhou SK, Chellappa R (2021) DA-VSR : Domain adaptable volumetric Super-Resolution for medical images. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI) , pp 75–85. https://doi.org/10.1007/978-3-030-87231-1_8

  96. Zhao C, Dewey BE, Pham DL et al (2020) SMORE: A self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning. IEEE Trans Med Imaging 40(3):805–817. https://doi.org/10.1109/TMI.2020.3037187

    Google Scholar 

  97. Sood RR, Shao W, Kunder C et al (2021) 3D Registration of pre-surgical prostate MRI and histopathology images via super-resolution volume reconstruction. Med Image Anal 69:101957. https://doi.org/10.1016/j.media.2021.101957

    Google Scholar 

  98. Siyuan Z, Jingxian D, Caiwen J et al (2020) 2D CNN-Based Slices-to-Volume Superresolution Reconstruction. IEEE Access 8:86357–86366. https://doi.org/10.1109/ACCESS.2020.2992481

    Google Scholar 

  99. Berthelot D, Raffel C, Roy A et al (2019) Understanding and improving interpolation in autoencoders via an adversarial regularizer. International Conference on Learning Representations (ICLR) (Poster)

  100. Wu Z, Wei J, Wang J et al (2022) Slice imputation: Multiple intermediate slices interpolation for anisotropic 3D medical image segmentation. Comput Biol Med, vol 105667. https://doi.org/10.1016/j.compbiomed.2022.105667

  101. Xue T, Chen B, Wu J et al (2019) Video enhancement with Task-Oriented flow. Int J Comput Vis 127(8):1106–1125. https://doi.org/10.1007/s11263-018-01144-2

    Google Scholar 

  102. Chu M, Xie Y, Mayer J et al (2020) Learning temporal coherence via self-supervision for GAN-based video generation. ACM Transactions on Graphics (TOG) 75:1–13. https://doi.org/10.1145/3386569.3392457

    Google Scholar 

  103. Li W, Tao X, Guo T et al (2020) Mucan: Multi-correspondence aggregation network for video super-resolution. European conference on computer vision (ECCV), pp 335–351. https://doi.org/10.1007/978-3-030-58607-2_20

  104. Ren S, Li J, Guo K et al (2021) Medical video super-resolution based on asymmetric back-projection network with multilevel error feedback. IEEE Access 9:17909–17920. https://doi.org/10.1109/ACCESS.2021.3054433

    Google Scholar 

  105. Sun D, Yang X, Liu MY et al (2018) Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. IEEE conference on computer vision and pattern recognition, pp 8934–8943

  106. Karani N, Zhang L, Tanner C et al (2017) Temporal interpolation of abdominal MRIs acquired during free-breathing. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp 359–367. https://doi.org/10.1007/978-3-319-66185-8-41

  107. Guo Y, Bi L, Ahn E et al (2020) A spatiotemporal volumetric interpolation network for 4d dynamic medical image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 4726–4735. https://doi.org/10.1109/CVPR42600.2020.00478

  108. Karani N, Zhang L, Tanner C et al (2019) An image interpolation approach for acquisition time reduction in navigator-based 4D MRI. Med Image Anal 54:20–29. https://doi.org/10.1016/j.media.2019.02.008

    Google Scholar 

  109. Lucas A, Lopez-Tapia S, Molina R et al (2019) Generative adversarial networks and perceptual losses for video super-resolution. IEEE Trans Image Process 28(7):3312–3327. https://doi.org/10.1109/TIP.2019.2895768

    MathSciNet  MATH  Google Scholar 

  110. Kim SY, Lim J, Na T et al (2019) Video super-resolution based on 3d-cnns with consideration of scene change. IEEE International Conference on Image Processing (ICIP), pp 2831–2835. https://doi.org/10.1109/ICIP.2019.8803297

  111. Isobe T, Jia X, Gu S et al (2020) Video super-resolution with recurrent structure-detail network. European conference on computer vision (ECCV), pp 645–660. https://doi.org/10.1007/978-3-030-58610-2_38

  112. Liu H, Zhao P, Ruan Z et al (2021) Large motion video super-resolution with dual subnet and multi-stage communicated upsampling. In: Proceedings of the AAAI conference on artificial intelligence, vol 35, pp 2127–2135

  113. Graves A (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Google Scholar 

  114. Tian Y, Zhang Y, Fu Y et al (2020) Tdan: Temporally-deformable alignment network for video super-resolution. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 3360–3369. https://doi.org/10.1109/CVPR42600.2020.00342

  115. Ying X, Wang L, Wang Y et al (2020) Deformable 3d convolution for video super-resolution. IEEE Signal Process Lett 27:1500–1504. https://doi.org/10.1109/LSP.2020.3013518

    Google Scholar 

  116. Song H, Xu W, Liu D et al (2021) Multi-Stage Feature fusion network for video Super-Resolution. IEEE Trans Image Process 30:2923–2934. https://doi.org/10.1109/TIP.2021.3056868

    Google Scholar 

  117. Chan KCK, Wang X, Yu K et al (2021) Basic VSR : The search for essential components in video super-resolution and beyond. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 4947–4956

  118. ITU-T RECOMMENDATION P (1999) Subjective video quality assessment methods for multimedia applications. pp 34-35

  119. Lai WS, Huang JB, Ahuja N et al (2018) Fast and accurate image super-resolution with deep laplacian pyramid networks. IEEE Trans Pattern Anal Mach Intell 41(11):2599–2613. https://doi.org/10.1109/TPAMI.2018.2865304

    Google Scholar 

  120. Wang Z, Bovik AC, Sheikh HR et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans On Image Process 13(4):600–612. https://doi.org/10.1109/TIP.2003.819861

    Google Scholar 

  121. Zhang Z, Dai G, Liang X et al (2018) Can signal-to-noise ratio perform as a baseline indicator for medical image quality assessment. IEEE Access 6:11534–11543. https://doi.org/10.1109/ACCESS.2018.2796632

    Google Scholar 

  122. Preedanan W, Kondo T, Bunnun P et al (2018) A comparative study of image quality assessment. International Workshop on Advanced Image Technology (IWAIT), pp 1–4. https://doi.org/10.1109/IWAIT.2018.8369657

  123. Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. Asilomar Conf Signals Syst Comput 2:1398–1402. https://doi.org/10.1109/ACSSC.2003.1292216

    Google Scholar 

  124. Sheikh HR, Bovik AC, De Veciana G (2005) An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans Image Process 14(12):2117–2128. https://doi.org/10.1109/TIP.2005.859389

    Google Scholar 

  125. You C, Li G, Zhang Y et al (2019) CT Super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE). IEEE Trans Med Imaging 39(1):188–203. https://doi.org/10.1109/TMI.2019.2922960

    Google Scholar 

  126. Yang CY, Ma C, Yang MH (2014) Single-image super-resolution: a benchmark. European conference on computer vision, pp 372–386. https://doi.org/10.1007/978-3-319-10593-2_25

  127. Zhang R, Isola P, Efros AA et al (2018) The unreasonable effectiveness of deep features as a perceptual metric. IEEE conference on computer vision and pattern recognition (CVPR), pp 586–595. https://doi.org/10.1109/CVPR.2018.00068

  128. Mittal A, Soundararajan R, Bovik AC (2012) Making a “completely blind” image quality analyzer. IEEE Signal Process Lett 20(3):209–212. https://doi.org/10.1109/LSP.2012.2227726

    Google Scholar 

  129. Venkatanath N, Praneeth D, Chandrasekhar B et al (2015) Blind image quality evaluation using perception based features. National Conference on Communications (NCC), pp 1–6. https://doi.org/10.1109/NCC.2015.7084843

  130. Ma C, Yang CY, Yang X et al (2017) Learning a no-reference quality metric for single-image super-resolution. Comput Vis Image Underst 158:1–16. https://doi.org/10.1016/j.cviu.2016.12.009

    Google Scholar 

  131. Zhang L, Zhang L, Mou X et al (2011) FSIM: A feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386. https://doi.org/10.1109/TIP.2011.2109730

    MathSciNet  MATH  Google Scholar 

  132. Dai D, Wang Y, Chen Y et al (2016) Is image super-resolution helpful for other vision tasks?. IEEE Winter Conference on Applications of Computer Vision (WACV), pp 1–9. https://doi.org/10.1109/WACV.2016.7477613

  133. Haris M, Shakhnarovich G, Ukita N (2021) Task-driven super resolution: Object detection in low-resolution images. Neural Information Processing, pp 387–395

  134. Sajjadi MSM, Scholkopf B, Hirsch M (2017) Enhancenet: Single image super-resolution through automated texture synthesis. IEEE international conference on computer vision (ICCV), pp 4491–4500. https://doi.org/10.1109/ICCV.2017.481

  135. Bai Y, Zhang Y, Ding M et al (2018) Sod-mtgan: Small object detection via multi-task generative adversarial network. IEEE European Conference on Computer Vision (ECCV), pp 206–221. https://doi.org/10.1007/978-3-030-01261-8_13

  136. Blau Y, Michaeli T (2018) The perception-distortion tradeoff. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 6228–6237. https://doi.org/10.1109/CVPR.2018.00652

  137. Giannakidis A, Oktay O, Keegan J et al (2017) Super-resolution reconstruction of late gadolinium cardiovascular magnetic resonance images using a residual convolutional neural network. International Society for Magnetic Resonance in Medicine (ISMRM), pp 1–3

  138. Steeden JA, Quail M, Gotschy A et al (2020) Rapid whole-heart CMR with single volume super-resolution. J Cardiovasc Magn Reson 22(1):1–13. https://doi.org/10.1186/s12968-020-00651-x

    Google Scholar 

  139. Ferdian E, Suinesiaputra A, Dubowitz DJ et al (2020) 4DFlowNet: super-resolution 4D flow MRI using deep learning and computational fluid dynamics. Front Phys 8:138. https://doi.org/10.3389/fphy.2020.00138

    Google Scholar 

  140. Wang S, Qin C, Savioli N et al (2021) Joint motion correction and super resolution for cardiac segmentation via latent optimisation. In: Medical Image Computing and Computer Assisted Intervention (MICCAI), pp 14–24. https://doi.org/10.1007/978-3-030-87199-4_2

  141. Ye X, Sun Z, Xu R, Wang Z et al (2022) Low-Dose CT Reconstruction via Dual-Domain learning and controllable modulation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp 549–559

  142. Boudraa S, Melouah A, Merouani HF (2020) Improving mass discrimination in mammogram-CAD system using texture information and super-resolution reconstruction. Evol Syst 11(4):697–706

    Google Scholar 

  143. Sood RR, Shao W, Kunder C et al (2021) 3D Registration of pre-surgical prostate MRI and histopathology images via super-resolution volume reconstruction. Med Image Anal 69:101957

    Google Scholar 

  144. Yamawaki K, Sun Y, Han XH (2021) Blind image super resolution using deep unsupervised learning. Electronics 10(21):2591. https://doi.org/10.3390/electronics10212591

    Google Scholar 

  145. Liang Y (2021) Unsupervised super resolution reconstruction of traffic surveillance vehicle images. International Conference on Machine Learning and Computing (ICMLC), pp 336–341. https://doi.org/10.1145/3457682.3457734

  146. Skandarani Y, Lalande A, Afilalo J et al (2021) Generative adversarial networks in cardiology. Canadian Journal of Cardiology. https://doi.org/10.1016/j.cjca.2021.11.003

  147. Yoo J, Ahn N, Sohn KA (2020) Rethinking data augmentation for image super-resolution: a comprehensive analysis and a new strategy. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 8375–8384. https://doi.org/10.1109/CVPR42600.2020.00840

  148. Jin X, Xu J, Tasaka K et al (2021) Multi-task learning-based all-in-one collaboration framework for degraded image super-resolution. ACM Trans Multimed Comput, Commun Appl (TOMM) 17(1):1–21. https://doi.org/10.1145/3417333

    Google Scholar 

  149. Hu X, Mu H, Zhang X et al (2019) Meta-SR: A magnification-arbitrary network for super-resolution. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 1575–1584. https://doi.org/10.1109/CVPR.2019.00167

  150. Simonyan K, Zisserman A (2015) Very deep convolutional networks for Large-Scale image recognition. International Conference on Learning Representations (ICLR), pp 1–14

Download references

Funding

This work was supported by the National Natural Science Foundation of China (62072089) and the Fundamental Research Funds for the Central Universities of China (N2116016, N2104001, N2019007, N2224001-10).

Author information

Authors and Affiliations

Authors

Contributions

This work is mainly carried out by the first author under the guidance of the second author and the corresponding author. Other authors assisted.

Corresponding author

Correspondence to Zhiqiong Wang.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Wang, Z., Liu, X. et al. Deep learning in medical image super resolution: a review. Appl Intell 53, 20891–20916 (2023). https://doi.org/10.1007/s10489-023-04566-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04566-9

Keywords

Navigation