Skip to main content
Log in

Amplitude transformed quantum convolutional neural network

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

With the rapid development of quantum neural networks (QNN), several quantum simulations of convolutional neural networks (CNN) have been proposed. Among them, Google has proposed three quantum convolutional neural network (QCNN) models, but its purely QCNN model suffers from slow convergence and low training efficiency. In this work, we design low-depth parameterized quantum circuits with only two quantum bits interacting and construct a QCNN framework with lower depths, fewer parameters and global correlation. Based on this, we propose an Amplitude Transformed Quantum Convolutional Neural Network (ATQCNN). Experiments show that our model achieves 100% and 97.92% accuracy and faster convergence on the quantum cluster state and CICMalDroid2020 datasets compared to the purely QCNN proposed by Google. In particular, the required parameters and depth of ATQCNN are in reduced by about 27% for the same scale of qubits. It will be more suitable for current noisy intermediate-scale quantum (NISQ) devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

The code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Tomar A, Kumar S, Pant B, Tiwari UK (2022) Dynamic kernel CNN-LR model for people counting. Appl Intell 52(1):55–70. https://doi.org/10.1007/s10489-021-02375-6

    Article  Google Scholar 

  2. Xia Z, Wang X, Wang C, Wang C, Ma B, Li Q, Wang M, Zhao T (2022) A robust zero-watermarking algorithm for lossless copyright protection of medical images. Appl Intell 52 (1):607–621. https://doi.org/10.1007/s10489-021-02476-2

    Article  Google Scholar 

  3. Sun X, Yang T, Hu B (2022) LSTM-TC: bitcoin coin mixing detection method with a high recall. Appl Intell 52(1):780–793. https://doi.org/10.1007/s10489-021-02453-9

    Article  Google Scholar 

  4. Mishra SK, Saini N, Saha S, Bhattacharyya P (2022) Scientific document summarization in multi-objective clustering framework. Appl Intell 52(2):1520–1543. https://doi.org/10.1007/s10489-021-02376-5

    Article  Google Scholar 

  5. Hilbert M, Lopez P (2011) The world’s technological capacity to store, communicate, and compute information. Science 332(6025):60–5

    Article  Google Scholar 

  6. Shor PW (1982) Simulating physics with computers. Int J Theor Phys 21(6):467–488. https://doi.org/10.1007/BF02650179

    Article  MathSciNet  Google Scholar 

  7. Wiebe N, Kapoor A, Svore K (2014) Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning. Quantum Inf Comput 15(3):318–358

    MathSciNet  Google Scholar 

  8. Zhang R, Wang J, Jiang N, Li H, Wang Z (2022) Quantum support vector machine based on regularized newton method. Neural Netw 151:376–384. https://doi.org/10.1016/j.neunet.2022.03.043

    Article  Google Scholar 

  9. Arrazola JM, Delgado A, Bardhan BR, Lloyd S (2020) Quantum-inspired algorithms in practice. Quantum 4:307. https://doi.org/10.22331/q-2020-08-13-307

    Article  Google Scholar 

  10. Simões RDM, Huber P, Meier N, Smailov N, Füchslin RM, Stockinger K (2023) Experimental evaluation of quantum machine learning algorithms. IEEE Access 11:6197–6208. https://doi.org/10.1109/ACCESS.2023.3236409

    Article  Google Scholar 

  11. Si-Cong Lu, Zheng Y, Wang XT, Re-Bing WU, Automation DO, University T (2020) Quantum machine learning. Nature 2017-549-7671:195–202

    Google Scholar 

  12. Li Z, Liu X, Xu N, Du J (2015) Experimental realization of a quantum support vector machine. Phys Rev Lett 114(14):140504

    Article  Google Scholar 

  13. Liao H, Convy I, Yang Z, Whaley KB (2023) Decohering tensor network quantum machine learning models. Quantum Mach Intell 5(1):1–16. https://doi.org/10.1007/s42484-022-00095-9

    Article  Google Scholar 

  14. Kak SC (1995) On quantum neural computing. Inf Sci 83(3&4):143–160. https://doi.org/10.1016/0020-0255(94)00095-S

    Article  Google Scholar 

  15. Newcomb RW, Yang C, Hodge-Miller A (2002) Quantum dot neural network neurons. 29–33

  16. Toth G, Lent CS, Tougaw PD, Brazhnik Y, Weng W, Porod W, Liu RW, Huang YF (2000) Quantum cellular neural networks. Superlattice Microst 20(4):473–478

    Article  Google Scholar 

  17. Matsui N, Takai M, Nishimura H (2015) A network model based on qubitlike neuron corresponding to quantum circuit. Electron Commun Jpn (Part III Fundam Electron Sci) 83(10):67–73

    Google Scholar 

  18. Gratsea A, Huembeli P (2022) Exploring quantum perceptron and quantum neural network structures with a teacher-student scheme. Quantum Mach Intell 4(1)

  19. Chen Y (2022) Quantum dilated convolutional neural networks. IEEE Access 10:0–20246. https://doi.org/10.1109/ACCESS.2022.3152213

    Article  Google Scholar 

  20. Konar D, Bhattacharyya S, Gandhi TK, Panigrahi BK (2020) A quantum-inspired self-supervised network model for automatic segmentation of brain MR images. Appl Soft Comput 93:106348. https://doi.org/10.1016/j.asoc.2020.106348

    Article  Google Scholar 

  21. Cong I, Soonwon C, Lukin M (2019) Quantum convolutional neural networks. Nat Phys 15(12):1273–1278. https://doi.org/10.1038/s41567-019-0648-8

    Article  Google Scholar 

  22. Parthasarathy R, Bhowmik RT (2021) Quantum optical convolutional neural network: a novel image recognition framework for quantum computing. IEEE Access 9:37–103346. https://doi.org/10.1109/ACCESS.2021.3098775

    Article  Google Scholar 

  23. Herrmann J, Llima SM, Remm A, Zapletal P, McMahon NA, Scarato C, Swiadek CK, Hellings C, Krinner S et al (2022) Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases. Nat Commun 13(1):4144

    Article  Google Scholar 

  24. Wei S, Chen Y, Zhou Z, Long G (2022) A quantum convolutional neural network on nisq devices. AAPPS Bull 32:1–11

    Article  Google Scholar 

  25. Pesah A, Cerezo M, Wang S, Volkoff T, Sornborger AT, Coles PJ (2021) Absence of barren plateaus in quantum convolutional neural networks. Phys Rev X 11(4):041011

    Google Scholar 

  26. Benedetti M, Lloyd E, Sack S, Fiorentini M (2019) Erratum: parameterized quantum circuits as machine learning models. Quantum Sci Technol 019601:1

    Google Scholar 

  27. Broughton M, Verdon G, McCourt T, Martinez AJ, Yoo JH, Isakov SV, Massey P, Halavati R, Niu MY, Zlokapa A et al (2020) Tensorflow quantum: A software framework for quantum machine learning. arXiv:2003.02989

  28. Bharti K, Cervera-Lierta A, Kyaw TH, Haug T, Alperin-Lea S, Anand A, Degroote M, Heimonen H, Kottmann JS, Menke T et al (2022) Noisy intermediate-scale quantum algorithms. Rev Modern Phys 94(1):015004

    Article  MathSciNet  Google Scholar 

  29. McClean JR, Romero J, Babbush R, Aspuru-Guzik A (2016) The theory of variational hybrid quantum-classical algorithms. New J Phys 18(2):023023

    Article  MATH  Google Scholar 

  30. Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM (2019) Supervised learning with quantum-enhanced feature spaces. Nature 567(7747):209–212

    Article  Google Scholar 

  31. Skolik A, Jerbi S, Dunjko V (2022) Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6:720

    Article  Google Scholar 

  32. Lloyd S, Weedbrook C (2018) Quantum generative adversarial learning, vol 121

  33. Sim S, Johnson PD, Aspuru-Guzik A (2019) Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Adv Quantum Technol 2(12):1900070

    Article  Google Scholar 

  34. Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow JM, Gambetta JM (2017) Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671):242–246

    Article  Google Scholar 

  35. Araujo IF, Park DK, Petruccione F, da Silva AJ (2021) A divide-and-conquer algorithm for quantum state preparation. Sci Rep 11(1):1–12

    Article  Google Scholar 

  36. LaRose R, Coyle B (2020) Robust data encodings for quantum classifiers. Phys Rev A 102 (3):032420

    Article  Google Scholar 

  37. Nielsen MA (2006) Cluster-state quantum computation. Rep Math Phys 57(1):147–161

    Article  MathSciNet  MATH  Google Scholar 

  38. Tucci RR (2005) An introduction to cartan’s kak decomposition for qc programmers. arXiv:quant-ph/0507171

  39. Sim S, Johnson PD, Aspuru-Guzik A (2019) Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Adv Quantum Technol 2(12)

  40. Kandala A, Temme K, Corcoles AD, Mezzacapo A, Chow JM, Gambetta JM (2018) Extending the computational reach of a noisy superconducting quantum processor. arXiv:1805.04492

  41. Henderson M, Shakya S, Pradhan S, Cook T (2020) Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Mach Intell 2(1):2

    Article  Google Scholar 

Download references

Funding

Major Science and Technology Projects in Henan Province, China: 221100210600.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Zheng Shan and Shiqin Di; methodology, Shiqin Di; software, Xiaodong Ding; validation, Shiqin Di, Congcong Feng and Guoqiang Shu; formal analysis, Jinchen Xu; investigation, Guoqiang Shu; resources, Guoqiang Shu; data curation, Xiaodong Ding; writing—original draft preparation, Shiqin Di; writing—review and editing, Jinchen Xu; visualization, Xiaodong Ding; supervision, Zheng Shan; project administration, Zheng Shan.; funding acquisition, Jinchen Xu. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Zheng Shan.

Ethics declarations

Conflict of Interests

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, S., Xu, J., Shu, G. et al. Amplitude transformed quantum convolutional neural network. Appl Intell 53, 20863–20873 (2023). https://doi.org/10.1007/s10489-023-04581-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04581-w

Keywords

Navigation