Skip to main content
Log in

Bi-attention network for bi-directional salient object detection

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Saliency detection models based on neural networks have achieved outstanding results, but there are still problems such as low accuracy of object boundaries and redundant parameters. To alleviate these problems, we make full use of position and contour information from the down-sampling layers, and optimize the detection result layer by layer. First, this paper designs an attention-based adaptive fusion module (AAF), which can suppress the background and highlight the foreground that is more relevant to the detection task. It automatically learns the fusion weights of different features to filter out conflict information. Second, this paper proposes a bi-attention block module which combines reverse attention and positive attention. Third, this paper introduces bi-directional task learning by decomposing the image into high-frequency and low-frequency components. This approach fully exploits the complementary and independent nature of different frequency information. Finally, the proposed method is compared with 14 state-of-the-art methods on 6 datasets, and achieves very competitive results. Additionally, the model size is only 114.19MB, and the inference speed can reach nearly 40 FPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The datasets and materials used or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The code used or analysed during the current study is available from the corresponding author on reasonable request.

References

  1. Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H (2010) Learning to detect a salient object. IEEE Transactions on Pattern analysis and machine intelligence 33(2):353–367

    Google Scholar 

  2. Mo Y, Wu Y, Yang X, Liu F, Liao Y (2022) Review the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing 493:626–646

    Article  Google Scholar 

  3. Liao K, Wang K, Zheng Y, Lin G, Cao C (2023) Multi-scale saliency features fusion model for person re-identification. Multimedia Tools and Applications 1–16

  4. Yan S, Peng L, Yu C, Yang Z, Liu H, Cai D (2022) Domain reconstruction and resampling for robust salient object detection. In: Proceedings of the 30th ACM international conference on multimedia, pp. 5417–5426

  5. Wang W, Shen J, Ling H (2018) A deep network solution for attention and aesthetics aware photo cropping. IEEE transactions on pattern analysis and machine intelligence 41(7):1531–1544

    Article  Google Scholar 

  6. Benli E, Motai Y, Rogers J (2019) Visual perception for multiple human-robot interaction from motion behavior. IEEE Systems Journal 14(2):2937–2948

    Article  Google Scholar 

  7. Wang W, Lai Q, Fu H, Shen J, Ling H, Yang R (2021) Salient object detection in the deep learning era: An in-depth survey. IEEE transactions on pattern analysis and machine intelligence 44(6):3239–3259

    Article  Google Scholar 

  8. Wu R, Feng M, Guan W, Wang D, Lu H, Ding E (2019) A mutual learning method for salient object detection with intertwined multi-supervision. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 8150–8159

  9. Qin X, Zhang Z, Huang C, Gao C, Dehghan M, Jagersand M (2019) Basnet: Boundary-aware salient object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 7479–7489

  10. Pang Y, Zhao X, Zhang L, Lu H (2020) Multi-scale interactive network for salient object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9413–9422

  11. Chen S, Tan X, Wang B, Lu H, Hu X, Fu Y (2020) Reverse attention-based residual network for salient object detection. IEEE transactions on image processing 29:3763–3776

    Article  MATH  Google Scholar 

  12. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: proceedings of the ieee conference on computer vision and pattern recognition, pp. 770–778

  13. Zhang X, Wang T, Qi J, Lu H, Wang G (2018) Progressive attention guided recurrent network for salient object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 714–722

  14. Zhao T, Wu X (2019) Pyramid feature attention network for saliency detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3085–3094

  15. Zhang L, Dai J, Lu H, He Y, Wang G (2018) A bi-directional message passing model for salient object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1741–1750

  16. Susladkar O, Deshmukh G, Nag S, Mantravadi A, Makwana D, Ravichandran S, Chavhan GH, Mohan CK, Mittal S et al (2022) Clarifynet: A high-pass and low-pass filtering based cnn for single image dehazing. Journal of systems architecture 132:102736

    Article  Google Scholar 

  17. Chen Y, Fan H, Xu B, Yan Z, Kalantidis Y, Rohrbach M, Yan S, Feng J (2019) Drop an octave: Reducing spatial redundancy in convolutional neural networks with octave convolution. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 3435–3444

  18. Wang C, Li C, Liu J, Luo B, Su X, Wang Y, Gao Y (2021) U2-onet: A two-level nested octave u-structure network with a multi-scale attention mechanism for moving object segmentation. Remote sensing 13(1):60

    Article  Google Scholar 

  19. Hu P, Shuai B, Liu J, Wang G (2017) Deep level sets for salient object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2300–2309

  20. Luo Z, Mishra A, Achkar A, Eichel J, Li S, Jodoin P (2017) Non-local deep features for salient object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6609–6617

  21. Zhang P, Wang D, Lu H, Wang H, Yin B (2017) Learning uncertain convolutional features for accurate saliency detection. In: Proceedings of the IEEE international conference on computer vision, pp. 212–221

  22. Xiao H, Feng J, Wei Y, Zhang M, Yan S (2018) Deep salient object detection with dense connections and distraction diagnosis. IEEE transactions on multimedia 20(12):3239–3251

    Article  Google Scholar 

  23. Tu Z, Ma Y, Li C, Tang J, Luo B (2020) Edge-guided non-local fully convolutional network for salient object detection. IEEE transactions on circuits and systems for video technology 31(2):582–593

    Article  Google Scholar 

  24. Fan D, Zhou T, Ji G, Zhou Y, Chen G, Fu H, Shen J, Shao L (2020) Inf-net: Automatic covid-19 lung infection segmentation from ct images. IEEE transactions on medical imaging 39(8):2626–2637

    Article  Google Scholar 

  25. Wei J, Wang S, Wu Z, Su C, Huang Q, Tian Q (2020) Label decoupling framework for salient object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 13025–13034

  26. Chen L, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence 40(4):834–848

    Article  Google Scholar 

  27. Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881–2890

  28. Wang T, Borji A, Zhang L, Zhang P, Lu H (2017) A stagewise refinement model for detecting salient objects in images. In: Proceedings of the IEEE international conference on computer vision, pp. 4019–4028

  29. Deng Z, Hu X, Zhu L, Xu X, Qin J, Han G, Heng P (2018) R3net: Recurrent residual refinement network for saliency detection. In: Proceedings of the 27th international joint conference on artificial intelligence, pp. 684–690

  30. Hou Q, Cheng M, Hu X, Borji A, Tu Z, Torr PH (2017) Deeply supervised salient object detection with short connections. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3203–3212

  31. Zhang P, Wang D, Lu H, Wang H, Ruan X (2017) Amulet: Aggregating multi-level convolutional features for salient object detection. In: Proceedings of the IEEE international conference on computer vision, pp. 202–211

  32. Ke W, Chen J, Jiao J, Zhao G, Ye Q (2017) Srn: Side-output residual network for object symmetry detection in the wild. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1068–1076

  33. Wang T, Zhang L, Wang S, Lu H, Yang G, Ruan X, Borji A (2018) Detect globally, refine locally: A novel approach to saliency detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3127–3135

  34. Hommel B, Chapman CS, Cisek P, Neyedli HF, Song J, Welsh TN (2019) No one knows what attention is. Attention, perception, & psychophysics 81:2288–2303

    Article  Google Scholar 

  35. Wang W, Zhao S, Shen J, Hoi SC, Borji A (2019) Salient object detection with pyramid attention and salient edges. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1448–1457

  36. Chen S, Tan X, Wang B, Hu X (2018) Reverse attention for salient object detection. In: Proceedings of the european conference on computer vision (eccv), pp. 234–250

  37. Chen D, Zhang S, Ouyang W, Yang J, Tai Y (2018) Person search via a mask-guided two-stream cnn model. In: Proceedings of the european conference on computer vision (eccv), pp. 734–750

  38. Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y (2018) Image super-resolution using very deep residual channel attention networks. In: Proceedings of the european conference on computer vision (eccv), pp. 286–301

  39. Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3156–3164

  40. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132–7141

  41. Woo S, Park J, Lee J, Kweon IS (2018) Cbam: Convolutional block attention module. In: Proceedings of the european conference on computer vision (eccv), pp. 3–19

  42. Liu Y, Zhang X, Bian J, Zhang L, Cheng M (2021) Samnet: Stereoscopically attentive multi-scale network for lightweight salient object detection. IEEE transactions on image processing 30:3804–3814

    Article  Google Scholar 

  43. Yang L, Zhang R, Li L, Xie X (2021) Simam: A simple, parameter-free attention module for convolutional neural networks. In: International conference on machine learning, pp. 11863–11874

  44. Liu N, Han J, Yang M (2018) Picanet: Learning pixel-wise contextual attention for saliency detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3089–3098

  45. Li G, Xie Y, Lin L, Yu Y (2017) Instance-level salient object segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2386–2395

  46. Li T, Song H, Zhang K, Liu Q (2020) Recurrent reverse attention guided residual learning for saliency object detection. Neurocomputing 389:170–178

    Article  Google Scholar 

  47. Zhang Z, Lin Z, Xu J, Jin W, Lu S, Fan D (2021) Bilateral attention network for rgb-d salient object detection. IEEE transactions on image processing 30:1949–1961

    Article  Google Scholar 

  48. Li J, Pan Z, Liu Q, Cui Y, Sun Y (2020) Complementarity-aware attention network for salient object detection. IEEE transactions on cybernetics 52(2):873–886

    Article  Google Scholar 

  49. Lee C, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. In: Artificial intelligence and statistics, pp. 562–570

  50. De Boer P, Kroese DP, Mannor S, Rubinstein RY (2005) A tutorial on the cross-entropy method. Annals of operations research 134(1):19–67

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. In: The thrity-seventh asilomar conference on signals, systems & computers, 2003, vol. 2, pp. 1398–1402

  52. Máttyus G, Luo W, Urtasun R (2017) Deeproadmapper: Extracting road topology from aerial images. In: Proceedings of the IEEE international conference on computer vision, pp. 3438–3446

  53. Li Y, Hou X, Koch C, Rehg JM, Yuille AL (2014) The secrets of salient object segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 280–287

  54. Shi J, Yan Q, Xu L, Jia J (2015) Hierarchical image saliency detection on extended cssd. IEEE transactions on pattern analysis and machine intelligence 38(4):717–729

    Article  Google Scholar 

  55. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings eighth IEEE international conference on computer vision. iccv 2001, vol. 2, pp. 416–423

  56. Li G, Yu Y (2016) Visual saliency detection based on multiscale deep cnn features. IEEE transactions on image processing 25(11):5012–5024

    Article  MathSciNet  MATH  Google Scholar 

  57. Yang C, Zhang L, Lu H, Ruan X, Yang M (2013) Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3166–3173

  58. Wang L, Lu H, Wang Y, Feng M, Wang D, Y (2017) Learning to detect salient objects with image-level supervision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 136–145

  59. Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Fequency-tuned salient region detection. In: 2009 IEEE conference on computer vision and pattern recognition, pp. 1597–1604

  60. Perazzi F, Krähenbühl P, Pritch Y, Hornung A (2012) Saliency filters: Contrast based filtering for salient region detection. In: 2012 IEEE conference on computer vision and pattern recognition, pp. 733–740

  61. Fan D, Cheng M, Liu Y, Li T, Borji A (2017) Structure-measure: A new way to evaluate foreground maps. In: Proceedings of the IEEE international conference on computer vision, pp. 4548–4557

  62. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32:8026–8037

    Google Scholar 

  63. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25:1097–1105

    Google Scholar 

  64. Feng M, Lu H, Ding E (2019) Attentive feedback network for boundary-aware salient object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1623–1632

  65. Zeng Y, Zhuge Y, Lu H, Zhang L, Qian M, Yu Y (2019) Multi-source weak supervision for saliency detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 6074–6083

  66. Zhang L, Zhang J, Lin Z, Lu H, He Y (2019) Capsal: Leveraging captioning to boost semantics for salient object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 6024–6033

  67. Wu Z, Su L, Huang Q (2019) Cascaded partial decoder for fast and accurate salient object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3907–3916

  68. Qin X, Zhang Z, Huang C, Dehghan M, Zaiane OR, Jagersand M (2020) U2-net: Going deeper with nested u-structure for salient object detection. Pattern recognition 106:107404

    Article  Google Scholar 

  69. Zhou H, Xie X, Lai J, Chen Z, Yang L (2020) Interactive two-stream decoder for accurate and fast saliency detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9141–9150

  70. Liu Y, Gu Y, Zhang X, Wang W, Cheng M (2020) Lightweight salient object detection via hierarchical visual perception learning. IEEE transactions on cybernetics

  71. Zhang M, Liu T, Piao Y, Yao S, Lu H (2021) Auto-msfnet: Search multi-scale fusion network for salient object detection. In: Proceedings of the 29th ACM international conference on multimedia, pp. 667–676

  72. Tang L, Li B, Zhong Y, Ding S, Song M (2021) Disentangled high quality salient object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 3580–3590

  73. Wu Z, Su L, Huang Q (2021) Decomposition and completion network for salient object detection. IEEE transactions on image processing 30:6226–6239

    Article  Google Scholar 

  74. Ke YY, Tsubono T (2022) Recursive contour-saliency blending network for accurate salient object detection. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp. 2940–2950

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianhui Liu.

Ethics declarations

Ethical Approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Wang, H., Liu, X. et al. Bi-attention network for bi-directional salient object detection. Appl Intell 53, 21500–21516 (2023). https://doi.org/10.1007/s10489-023-04648-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04648-8

Keywords

Navigation