Skip to main content
Log in

Generalized nonconvex regularization for tensor RPCA and its applications in visual inpainting

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

As a demonstrated and foremost approach of extracting the key features from corrupted observations, tensor robust principal component analysis has been considered in various fields of data processing related to tensors. It is usually modeled as a low-rank and sparse tensor decomposition problem and can be solved by minimizing a simple convex program. However, convex optimization methods often fail to deeply explore the rank and sparsity of tensors, which leads to suboptimality. Based on tensor singular value decomposition, in this work, we introduce generalized nonconvex regularizers accommodating most popular nonconvex (and possibly nonsmooth) surrogate functions to be used as effective approximations of the tensor rank function and \(\ell _{0}\)-norm. The established unified frame equips universality for a large group of nonconvex surrogate functions. Moreover, we consider tube-wise sparse noise in addition to entry-wise sparse noise, which provides a better way of handling structured corrupted observations arising from practical issues. We further develop an efficient algorithm with convergence guarantees to implement generalized nonconvex optimization based upon the alternating direction method of multipliers. The satisfactory performance results of the proposed method are verified by simulations and visual inpainting applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. Originated from http://www.eecs.qmul.ac.uk/~phao/IP/Images/

  2. RelErrorL is usually much higher than that of the sparse component; thus, we only use the relative error of low-rank component recovery to measure the performance of algorithms from now on.

  3. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

  4. http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html

  5. http://trace.eas.asu.edu/yuv/

References

  1. Wang Y, Lin L, Zhao Q, Yue T, Meng D, Leung Y (2017) Compressive sensing of hyperspectral images via joint tensor tucker decomposition and weighted total variation regularization. IEEE Geosci Remote Sens Lett 14(12):2457–2461

    Google Scholar 

  2. Zheng Y, Huang T, Zhao X, Jiang T, Ma T, Ji T (2020) Mixed noise removal in hyperspectral image via low-fibered-rank regularization. IEEE Trans Geosci Remote Sens 58(1):734–749

    Google Scholar 

  3. Tao D, Guo Y, Li Y, Gao X (2018) Tensor rank preserving discriminant analysis for facial recognition. IEEE Trans Image Process 27(1):325–334

    MathSciNet  MATH  Google Scholar 

  4. Frolov E, Oseledets I (2017) Tensor methods and recommender systems. Wiley Interdiscip Rev Data Min Knowl Disc 7(3):e1201

    Google Scholar 

  5. Zhang Y, Bi X, Tang N, Qu A (2021) Dynamic tensor recommender systems. J Mach Learn Res 22(65):1–35

    MathSciNet  MATH  Google Scholar 

  6. Lu C, Feng J, Chen Y, Liu W, Lin Z, Yan S (2020) Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans Pattern Anal Mach Intell 42(4):925–938

    Google Scholar 

  7. Huang H, Liu Y, Long Z, Zhu C (2020) Robust low-rank tensor ring completion. IEEE Trans Comput Imaging 6:1117–1126

    MathSciNet  Google Scholar 

  8. Li B, Zhao X, Wang J, Chen Y, Jiang T, Liu J (2021) Tensor completion via collaborative sparse and low-rank transforms. IEEE Trans Comput Imaging 7:1289–1303

    MathSciNet  Google Scholar 

  9. Kilmer M, Horesh L, Avron H, Newman E (2021) Tensor-tensor algebra for optimal representation and compression of multiway data. Proc Natl Acad Sci 118(28)

  10. Zhou P, Feng J (2017) Outlier-robust tensor pca. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp 2263–2271

  11. Chen Y, Wang S, Zhou Y (2018) Tensor nuclear norm-based low-rank approximation with total variation regularization. IEEE J Sel Top Signal Process 12(6):1364–1377

    Google Scholar 

  12. Jiang T, Huang T, Zhao X, Deng L (2020) Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm. J Comput Appl Math 372:112680

    MathSciNet  MATH  Google Scholar 

  13. Zhang F, Wang J, Wang W, Xu C (2021) Low-tubal-rank plus sparse tensor recovery with prior subspace information. IEEE Trans Pattern Anal Mach Intell 43(10):3492–3507

    Google Scholar 

  14. Zhang X, Wang D, Zhou Z, Ma Y (2021) Robust low-rank tensor recovery with rectification and alignment. IEEE Trans Pattern Anal Mach Intell 43(1):238–255

    Google Scholar 

  15. Xie Q, Zhao Q, Meng D, Xu Z (2018) Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery. IEEE Trans Pattern Anal Machine Intell 40(8):1888–1902

    Google Scholar 

  16. Chen Y, Xiao X, Peng C, Lu G, Zhou Y (2022) Low-rank tensor graph learning for multi-view subspace clustering. IEEE Trans Circ Syst Video Technol 32(1):92–104

    Google Scholar 

  17. Li Z, Wang Y, Zhao Q, Zhang S, Meng D (2022) A tensor-based online rpca model for compressive background subtraction. IEEE Trans Neural Netw Learn Syst

  18. Kiers H (2000) Towards a standardized notation and terminology in multiway analysis. J Chemom 14(3):105–122

    Google Scholar 

  19. Tucker L (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31(3):279–311

    MathSciNet  Google Scholar 

  20. Oseledets I (2011) Tensor-train decomposition. SIAM. J Sci Comput 33(5):2295–2317

    MathSciNet  MATH  Google Scholar 

  21. Kilmer M, Martin C (2011) Factorization strategies for third-order tensors. Linear Algebra Appl 435(3):641–658

    MathSciNet  MATH  Google Scholar 

  22. Liu J, Musialski P, Wonka P, Ye J (2013) Tensor completion for estimating missing values in visual data. IEEE Trans Pattern Anal Mach Intell 35(1):208–220

    Google Scholar 

  23. Zhang Z, Ely G, Aeron S, Hao N, Kilmer M (2014) Novel methods for multilinear data completion and de-noising based on tensor-svd. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp 3842–3849

  24. Lu C, Feng J, Chen Y, Liu W, Lin Z, Yan S (2016) Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp 5249–5257

  25. Bengua J, Phien H, Tuan H, Do M (2017) Efficient tensor completion for color image and video recovery: Low-rank tensor train. IEEE Trans Image Process 26(5):2466–2479

    MathSciNet  MATH  Google Scholar 

  26. Friedland S, Lim LH (2018) Nuclear norm of higher-order tensors. Math Comput 87(311):1255–1281

    MathSciNet  MATH  Google Scholar 

  27. Yang J, Zhao X, Ji T, Ma T, Huang T (2020) Low-rank tensor train for tensor robust principal component analysis. Appl Math Comput 367:124783

    MathSciNet  MATH  Google Scholar 

  28. Candès E, Wakin M, Boyd S (2008) Enhancing sparsity by reweighted \(\ell _{1}\) minimization. J Fourier Anal Appl 14(5):877–905

    MathSciNet  MATH  Google Scholar 

  29. Gao C, Wang N, Yu Q, Zhang Z (2011) A feasible nonconvex relaxation approach to feature selection. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp 356–361

  30. Geman D, Yang C (1995) Nonlinear image recovery with half-quadratic regularization. IEEE Trans Image Process 4(7):932–946

    Google Scholar 

  31. Trzasko J, Manduca A (2008) Highly undersampled magnetic resonance image reconstruction via homotopic \(\ell _{0}\)-minimization. IEEE Trans Med Imaging 28(1):106–121

    Google Scholar 

  32. Friedman J (2012) Fast sparse regression and classification. Int J Forecast 28(3):722–738

    Google Scholar 

  33. Frank L, Friedman J (1993) A statistical view of some chemometrics regression tools. Technometrics 35(2):109–135

    MATH  Google Scholar 

  34. Zhang C (2010) Nearly unbiased variable selection under minimax concave penalty. Ann Stat 38(2):894–942

    MathSciNet  MATH  Google Scholar 

  35. Zhang T (2010) Analysis of multi-stage convex relaxation for sparse regularization. J Mach Learn Res 11(3):1081–1107

    MathSciNet  MATH  Google Scholar 

  36. Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96(456):1348–1360

    MathSciNet  MATH  Google Scholar 

  37. Xue J, Zhao Y, Liao W, Chan J (2019) Nonconvex tensor rank minimization and its applications to tensor recovery. Inf Sci 503:109–128

    MathSciNet  MATH  Google Scholar 

  38. Cai S, Luo Q, Yang M, Li W, Xiao M (2019) Tensor robust principal component analysis via non-convex low rank approximation. Appl Sci 9(7):1411

    Google Scholar 

  39. Chen Y, Wang S, Peng C, Hua Z, Zhou Y (2021) Generalized nonconvex low-rank tensor approximation for multi-view subspace clustering. IEEE Trans Image Process 30:4022–4035

    MathSciNet  Google Scholar 

  40. Qiu D, Bai M, Ng M, Zhang X (2021) Nonlocal robust tensor recovery with nonconvex regularization. Inverse Probl 37(3):035001

    MathSciNet  MATH  Google Scholar 

  41. Yang M, Luo Q, Li W, Xiao M (2022) Nonconvex 3d array image data recovery and pattern recognition under tensor framework. Pattern Recogn 122:108311

    Google Scholar 

  42. Lu C, Tang J, Yan S, Lin Z (2015) Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm. IEEE Trans Image Process 25(2):829–839

    MathSciNet  MATH  Google Scholar 

  43. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    MATH  Google Scholar 

  44. Wang J, Hou J, Eldar Y (2022) Tensor robust principal component analysis from multilevel quantized observations. IEEE Trans Inf Theory 69(1):383–406

    MathSciNet  Google Scholar 

  45. Wang A, Jin Z, Tang G (2020) Robust tensor decomposition via t-svd: Near-optimal statistical guarantee and scalable algorithms. Signal Process 167:107319

    Google Scholar 

  46. Lu C, Tang J, Yan S, Lin Z (2014) Generalized nonconvex nonsmooth low-rank minimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp 4130–4137

  47. Lu C, Zhu C, Xu C, Yan S, Lin Z (2015) Generalized singular value thresholding. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp 1805–1811

  48. Zhang X (2018) A nonconvex relaxation approach to low-rank tensor completion. IEEE Trans Neural Netw Learn Syst 30(6):1659–1671

    Google Scholar 

  49. Wen F, Ying R, Liu P, Truong T (2019) Nonconvex regularized robust pca using the proximal block coordinate descent algorithm. IEEE Trans Signal Process 67(20):5402–5416

    MathSciNet  MATH  Google Scholar 

  50. Yang Z, Fan L, Yang Y, Yang Z, Gui G (2020) Generalized nuclear norm and laplacian scale mixture based low-rank and sparse decomposition for video foreground-background separation. Signal Process 172:107527

  51. Liu X, Lu J, Shen L, Xu C, Xu Y (2020) Multiplicative noise removal: nonlocal low-rank model and its proximal alternating reweighted minimization algorithm. SIAM J Imaging Sci 13(3):1595–1629

    MathSciNet  MATH  Google Scholar 

  52. Wang H, Zhang F, Wang J, Huang T, Huang J, Liu X (2021) Generalized nonconvex approach for low-tubal-rank tensor recovery. IEEE Trans Neural Netw Learn Syst 33(8):3305–3319

    MathSciNet  Google Scholar 

  53. Zhang X, Zheng J, Zhao L, Zhou Z, Lin Z (2022) Tensor recovery with weighted tensor average rank. IEEE Trans Neural Netw Learn Syst

  54. Kilmer M, Braman K, Hao N, Hoover R (2013) Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging. SIAM J Matrix Anal Appl 34(1):148–172

    MathSciNet  MATH  Google Scholar 

  55. Donoho D (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627

    MathSciNet  MATH  Google Scholar 

  56. Eckstein J, Bertsekas D (1992) On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators. Math Program 55(3):293–318

    MathSciNet  MATH  Google Scholar 

  57. Huang B, Mu C, Goldfarb D, Wright J (2015) Provable models for robust low-rank tensor completion. Pac J Optim 11(2):339–364

    MathSciNet  MATH  Google Scholar 

  58. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. pp 416–423

  59. Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Google Scholar 

  60. Lee K, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698

    Google Scholar 

  61. Wielgosz M, Pietroń M (2017) Using spatial pooler of hierarchical temporal memory to classify noisy videos with predefined complexity. Neurocomputing 240:84–97

    Google Scholar 

  62. Mousavi S, Ellsworth W, Zhu W, Chuang L, Beroza G (2020) Earthquake transformer-an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat Commun 11(1):3952

    Google Scholar 

  63. Karimi D, Dou H, Warfield S, Gholipour A (2020) Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis. Med Image Anal 65:101759

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12101512), the China Postdoctoral Science Foundation (Grant No. 2021M692681), the Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-bshX0155) and the Fundamental Research Funds for the Central Universities (Grant No. SWU120078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Wang, H., Qin, W. et al. Generalized nonconvex regularization for tensor RPCA and its applications in visual inpainting. Appl Intell 53, 23124–23146 (2023). https://doi.org/10.1007/s10489-023-04744-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04744-9

Keywords

Navigation