Skip to main content
Log in

GSA-DLA34: a novel anchor-free method for human-vehicle detection

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Most anchor-free object detectors suffer from intersample imbalance, underutilization of multiscale features and long training times in traffic object dataset. As a result, the efficiency and accuracy of the detector may be significantly reduced for samples with few categories and small sizes. To address these problems, we propose a novel anchor-free approach, namely, GSA-DLA34, which is based on Gaussian kernel, sample weights, and attention. Its features are as follows. First, pyramid squeeze attention (PSA) is added after the backbone network to enhance multiscale traffic object representations. Second, for better object positioning with few categories and small scales, we design active sample weights for regression loss to make better information use. In addition, an elliptical Gaussian sampling module (EGSM) with a controllable Gaussian kernel shape is incorporated into the classification and regression branches to accelerate network training. The results show that our GSA-DLA34 has a significant advantage in balancing training time, inference speed, and accuracy. With an average precision of 89% on the PASCAL VOC dataset and an inference speed of 55.2 FPS on the RTX 2080 Ti, the GSA-DLA34 method can significantly improve human-vehicle recognition accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wang X, Zheng X, Chen W, Wang F (2021) Visual human-computer interactions for intelligent vehicles and intelligent transportation systems: The state of the art and future directions. IEEE Trans Syst Man Cybern Syst 51(1):253–265. https://doi.org/10.1109/TSMC.2020.3040262

    Article  Google Scholar 

  2. Boukerche A, Zhijun H (2021) Object detection using deep learning methods in traffic scenarios. ACM Comput Surv 54(2):30–13035. https://doi.org/10.1145/3434398

  3. Liu H, Nie H, Zhang Z, Li YF (2021) Anisotropic angle distribution learning for head pose estimation and attention understanding in humancomputer interaction. Neurocomputing 433:310–322. https://doi.org/10.1016/j.neucom.2020.09.068

    Article  Google Scholar 

  4. Hu B (2020) Object Detection for Automatic Driving Based on Deep Learning. In: 2020 International Conference on Computing and Data Science (CDS). IEEE, Stanford, CA, USA, pp 1–8. https://doi.org/10.1109/CDS49703.2020.00065

  5. Liu H, Zhang C, Deng Y, Xie B, Liu T, Zhang Z, Li YF (2023) TransIFC: Invariant Cues-aware Feature Concentration Learning for Efficient Fine-grained Bird Image Classification. IEEE Transactions on Multimedia 1–14. https://doi.org/10.1109/TMM.2023.3238548

  6. Liu T, Liu H, Yang B, Zhang Z (2023) LDCNet: Limb Direction Cues-aware Network for Flexible Human Pose Estimation in Industrial Behavioral Biometrics Systems. IEEE Trans Ind Inform 1–11. https://doi.org/10.1109/TII.2023.3266366

  7. Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  8. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY (2016) Berg AC SSD: Single Shot MultiBox Detector. In: Leibe B, Matas J, Sebe N, Welling M (eds.) Computer Vision - ECCV 2016, vol. 9905. Springer, Cham, pp 21–37. https://doi.org/10.1007/978-3-319-46448-0_2

  9. Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Honolulu, HI, USA, pp 936–944. https://doi.org/10.1109/CVPR.2017.106

  10. Law H, Deng J (2020) Cornernet: Detecting objects as paired keypoints. Int J Comput Vis 128(3):642–656

    Article  Google Scholar 

  11. Zhou X, Zhuo J, Krähenbühl P (2019) Bottom-up Object Detection by Grouping Extreme and Center Points. Preprint at arXiv:1901.08043v2

  12. Zhou X, Wang D, Krähenbühl P (2019) Objects as points. arXiv:1904.07850

  13. Zhou J, Zhang B, Yuan X, Lian C, Ji L, Zhang Q, Yue J (2023) Yolocir: The network based on yolo and convnext for infrared object detection. Infrared Phys Technol 131:104703. https://doi.org/10.1016/j.infrared.2023.104703

    Article  Google Scholar 

  14. Kang Q, Zhao H, Yang D, Ahmed HS, Ma J (2020) Lightweight convolutional neural network for vehicle recognition in thermal infrared images. Infrared Phys Technol 104:103120. https://doi.org/10.1016/j.infrared.2019.103120

    Article  Google Scholar 

  15. Chen H, Cai W, Wu F, Liu Q (2021) Vehicle-mounted far-infrared pedestrian detection using multi-object tracking. Infrared Phys Technol 115:103697. https://doi.org/10.1016/j.infrared.2021.103697

    Article  Google Scholar 

  16. Sun H, Liu Y, Yuhan L (2023) A review of saliency object detection based on deep learning. Data Acquisition and Processing 38(01), 21–50. https://doi.org/10.16337/j.1004-9037.2023.01.002

  17. Liu T, Wang J, Yang B, Wang X (2021) NGDNet: Nonuniform Gaussianlabel distribution learning for infrared head pose estimation and on-task behavior understanding in the classroom. Neurocomputing 436:210–220. https://doi.org/10.1016/j.neucom.2020.12.090

    Article  Google Scholar 

  18. Dai J, Li Y, He K, Sun J (2016) R-fcn: Object detection via region-based fully convolutional networks. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA, pp 379–387

  19. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: Unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Las Vegas, NV, USA, pp. 779–788. https://doi.org/10.1109/CVPR.2016.91

  20. Fu C, Liu W, Ranga A, Tyagi A, Berg A.C (2017) DSSD : Deconvolutional Single Shot Detector. Preprint at arXiv:1701.06659

  21. Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Honolulu, HI, USA, pp. 6517–6525. https://doi.org/10.1109/CVPR.2017.690

  22. Lin TY, Goyal P, Girshick R, He K, Dollár P (2020) Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell 42(2):318–327. https://doi.org/10.1109/TPAMI.2018.2858826

    Article  Google Scholar 

  23. Xiao J (2021) exyolo: A small object detector based on yolov3 object detector. Proced Comput Sci 188:18–25. https://doi.org/10.1016/j.procs.2021.05.048

    Article  Google Scholar 

  24. Sharma V, Dhiman P, Rout RK (2023) Improved traffic sign recognition algorithm based on yolov4-tiny. J Vis Commun Image Rep 91:103774. https://doi.org/10.1016/j.jvcir.2023.103774

    Article  Google Scholar 

  25. Tian Z, Shen C, Chen H, He T(2019) FCOS: Fully Convolutional One-Stage Object Detection. Preprint at arXiv:1904.01355

  26. Liu Z, Zheng T, Xu G, Yang Z, Liu H, Cai D (2020) Training-timefriendly network for real-time object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34. AAAI Press, Palo Alto, pp. 11685–11692. https://doi.org/10.1609/aaai.v34i07.6838

  27. Hu J, Shen L, Albanie S, Sun G, Wu E (2020) Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell 42(8):2011–2023. https://doi.org/10.1109/TPAMI.2019.2913372

    Article  Google Scholar 

  28. Yu Z, Shi X, Zhang Z (2023) A multi-head self-attention transformer-based model for traffic situation prediction in terminal areas. IEEE Access 11:16156–16165. https://doi.org/10.1109/ACCESS.2023.3245085

    Article  Google Scholar 

  29. Woo S, Park J, Lee JY, Kweon IS (2018) Cbam: Convolutional block attention module. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y. (eds.) Computer Vision - ECCV 2018, vol. 11211. Springer, Cham, pp 3–19. https://doi.org/10.1007/978-3-030-01234-2_1

  30. Zhang Z, Qiao S, Xie C, Shen W, Wang B, Yuille AL (2018) Singleshot object detection with enriched semantics. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition. Computer Vision Foundation / IEEE Computer Society, Salt Lake City, UT, USA, pp 5813–5821. https://doi.org/10.1109/CVPR.2018.00609

  31. Zhang H, Zu K, Lu J, Zou Y, Meng D (2023) Epsanet: An efficient pyramid squeeze attention block on convolutional neural network. In: Wang L, Gall J, Chin TJ, Sato I, Chellappa R (eds.) Computer Vision - ACCV 2022, vol. 13843. Springer, Cham, pp 541–557. https://doi.org/10.1007/978-3-031-26313-2_33

  32. Cao K, Wei C, Gaidon A, Arechiga N, Ma T (2019) Learning imbalanced datasets with label-distribution-aware margin loss. In: Wallach H, Larochelle H, Beygelzimer A, d’ Alché-Buc F, Fox E, Garnett R (eds.) Proceedings of the 33rd International Conference on Neural Information Processing Systems, vol. 32. Curran Associates Inc., Red Hook, NY, USA, pp 1565–1576

  33. Cui Y, Jia M, Lin TY, Song Y, Belongie S (2019) Class-balanced loss based on effective number of samples. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Long Beach, CA, USA, pp 9260–9269. https://doi.org/10.1109/CVPR.2019.00949

  34. Wang H, Peng J, Chen D, Jiang G, Zhao T, Fu X (2020) Attributeguided feature learning network for vehicle reidentification. IEEE MultiMed 27(4):112–121. https://doi.org/10.1109/MMUL.2020.2999464

    Article  Google Scholar 

  35. Fan S, Zhu F, Chen S, Zhang H, Tian B, Lv Y, Wang FY (2021) FIICenterNet: an anchor-free detector with foreground attention for traffic object detection. IEEE Trans Veh Technol 70:121–132. https://doi.org/10.1109/TVT.2021.3049805

  36. Wang H, Peng J, Zhao Y, Fu X (2020) Multi-path deep cnns for fine-grained car recognition. IEEE Trans Veh Technol 69(10):10484–10493. https://doi.org/10.1109/TVT.2020.3009162

  37. Yu F, Wang D, Shelhamer E, Darrell T (2018) Deep layer aggregation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, Salt Lake City, UT, USA, pp 2403–2412. https://doi.org/10.1109/CVPR.2018.00255

  38. Zhu X, Hu H, Lin S, Dai J (2019) Deformable convnets v2: More deformable, better results. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Long Beach, CA, USA, pp 9300–9308. https://doi.org/10.1109/CVPR.2019.00953

  39. Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10, (ed) Fürnkranz J, Joachims T. Omnipress, Haifa, Israel, pp 807–814

  40. Zheng Z, Wang P, Liu W, Li J, Ye R, Ren D (2020) Distance-IoU Loss: faster and better learning for bounding box regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34. AAAI Press, Palo Alto, pp 12993–13000. https://doi.org/10.1609/aaai.v34i07.6999

  41. Everingham M, Gool LV, Williams CKI, Winn JM, Zisserman A (2010) The Pascal Visual Object Classes (VOC) Challenge. figshare https://doi.org/10.1007/s11263-009-0275-4

  42. Chen K, Wang J, Pang J, Cao Y, Xiong Y, Li X, Sun S, Feng W, Liu Z, Xu J, et al. (2019) MMDetection: Open mmlab detection toolbox and benchmark. Preprint at arXiv:1906.07155

  43. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. figshare https://doi.org/10.1109/CVPR.2009.5206848

  44. Jais IKM, Ismail AR, Nisa SQ (2019) Adam optimization algorithm for wide and deep neural network. Knowl Eng Data Sci 2(1), 41–56. https://doi.org/10.17977/um018v2i12019p41-46

  45. Girshick R (2015) Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp 1440–1448. https://doi.org/10.1109/ICCV.2015.169

  46. He K, Gkioxari G, Dollár P, Girshick R (2020) Mask R-CNN. IEEE Trans Pattern Anal Mach Intell 42(2):386–397. https://doi.org/10.1109/TPAMI.2018.2844175

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Liaoning Provincial Science and Technology Department (No.1655706734383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Lv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Lv, N., Lv, S. et al. GSA-DLA34: a novel anchor-free method for human-vehicle detection. Appl Intell 53, 24619–24637 (2023). https://doi.org/10.1007/s10489-023-04788-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04788-x

Keywords

Navigation