Skip to main content
Log in

A comprehensive sensorimotor control model emulating neural activities for planar human arm reaching movements

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Functional Electrical Stimulation (FES) has demonstrated potential in clinical applications, but determining the optimal electrical current to stimulate muscles remains challenging due to the intricate coordination of various muscle groups during human movement. In this study, we introduce a novel approach to model and control human arm planar reaching movements. In terms of the model, a comprehensive human upper limb model is developed, taking into account the double-link structure, six muscles, and the connection points between muscles and the skeletal system. Regarding the control, a comprehensive sensorimotor control model emulating neural activities for human arm planar reaching movements is proposed. The control model effectively incorporates the imprecise nature of human visual sensory feedback for arm endpoint positioning and emulates the neural activities to determine appropriate stimulation levels for each of the six constituent muscles, inducing muscle contractions and guiding the skeletal systems to the target positions. The effectiveness of the proposed controller is demonstrated via numerical simulation experiments. Through comparisons with different controllers, it is shown that the proposed controller exhibits superior performance in tracking predefined motion trajectories and robustness in dealing with various skeletal muscle arm parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Ory MG, Smith MR (2022) Editorial: Insights in Aging and Public Health: 2021. Frontiers in Public Health 10. https://doi.org/10.3389/fpubh.2022.929418

  2. Graham W (2013) Neuro-geriatrics: A Clinical Manual Chapter 20: Tremor, Cham. https://doi.org/10.1007/978-3-319-56484-520

  3. Marquez-Chin C, Popovic MR (2020) Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review. Biomed Eng Online 19(1):1–25. https://doi.org/10.1186/s12938-020-00773-4

    Article  Google Scholar 

  4. Vafadar AK, Côté JN, Archambault P (2015) Effectiveness of Functional Electrical Stimulation in Improving Clinical Outcomes in the Upper Arm following Stroke: A Systematic Review and Meta-Analysis. BioMed Res Int 2015:1–14. https://doi.org/10.1155/2015/729768

    Article  Google Scholar 

  5. Oliveira AS, Gizzi L, Farina D, Kersting UG (2014) Motor modules of human locomotion: influence of EMG averaging, concatenation, and number of step cycles. Front Hum Neurosci 8. https://doi.org/10.3389/fnhum.2014.00335

  6. Torres-Oviedo G, Ting LH (2007) Muscle Synergies Characterizing Human Postural Responses. J Neurophysiol 98(4):2144–2156. https://doi.org/10.1152/jn.01360.2006

    Article  PubMed  Google Scholar 

  7. Shirzadfar H (2021) The Structure and Function of Nervous System and Skeletal Muscle:A Review. Current neuropsychiatry and clinical neuroscience reports 3(1):1–25 https://doi.org/jneurosciences.com/index.php/cncnr/article/view/8

  8. Parro C, Dixon M, Christoff K (2018) The neural basis of motivational influences on cognitive control. Hum Brain Mapp 39(12):5097–5111. https://doi.org/10.1002/hbm.24348

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liang H, Liu G, Zhang H, Huang T (2021) Neural-Network-Based Event-Triggered Adaptive Control of Nonaffine Nonlinear Multiagent Systems With Dynamic Uncertainties. IEEE transactions on neural networks and learning systems 32(5):2239–2250. https://doi.org/10.1109/tnnls.2020.3003950

    Article  MathSciNet  PubMed  Google Scholar 

  10. Criss CR, Onate JA, Grooms DR (2020) Neural activity for hip-knee control in those with anterior cruciate ligament reconstruction: A task-based functional connectivity analysis. Neurosci Lett 730:134985. https://doi.org/10.1016/j.neulet.2020.134985

    Article  CAS  PubMed  Google Scholar 

  11. Svoboda K, Li N (2018) Neural mechanisms of movement planning: motor cortex and beyond. Current Opinion in Neurobiology 49:33–41. https://doi.org/10.1016/j.conb.2017.10.023

    Article  CAS  PubMed  Google Scholar 

  12. Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London 126(843):136–195. https://doi.org/10.1098/rspb.1938.0050

    Article  ADS  Google Scholar 

  13. Romero F, Alonso F (2016) A comparison among different Hill-type contraction dynamics formulations for muscle force estimation. Mechanical Sciences 7(1):19–29. https://doi.org/10.5194/ms-7-19-2016

    Article  ADS  Google Scholar 

  14. Wiedemann L, Jayaneththi V, Kimpton J, Chan HL-Y, Müller MA, Hogan A, Lim E, Wilson NC, McDaid A (2018) Neuromuscular characterisation in Cerebral Palsy using hybrid Hill-type models on isometric contractions. Comput Biol Med 103:269–276. https://doi.org/10.1016/j.compbiomed.2018.10.027

    Article  CAS  PubMed  Google Scholar 

  15. Rockenfeller R, Herold JL, Götz T (2020) Parameter estimation and experimental design for Hill-type muscles: Impulses from optimization-based modeling. Math Biosci 327:108432. https://doi.org/10.1016/j.mbs.2020.108432

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  16. Hussein M, Shebl S, Elnemr R, Elkaranshawy HA (2022) A New Muscle Activation Dynamics Model, That Simulates the Calcium Kinetics and Incorporates the Role of Store-Operated Calcium Entry Channels, to Enhance the Electromyography-Driven Hill-Type Models. J Biomech Eng 144(1). https://doi.org/10.1115/1.4051718

  17. Schmitt S, Günther M, Häufle DFB (2019) The dynamics of the skeletal muscle: A systems biophysics perspective on muscle modeling with the focus on Hilltype muscle models. Gamm-mitteilungen 42(3). https://doi.org/10.1002/gamm.201900013

  18. Xiuxiang C, Ting W, YongKun Z, Wen Q, Xinghua Z (2018) An adaptive fuzzy sliding mode control for angle tracking of human musculoskeletal arm model. Comput Elect Eng 72:214–223. https://doi.org/10.1016/j.compeleceng.2018.09.013

    Article  Google Scholar 

  19. Wochner I, Driess D, Zimmermann H, Haeufle DFB, Toussaint M, Schmitt S (2020) Optimality Principles in Human Point-to-Manifold Reaching Accounting for Muscle Dynamics. Front Computat Neurosci 14. https://doi.org/10.3389/fncom.2020.00038

  20. Xu D, Wu Q, Zhu Y-H (2021) Development of a sEMG-Based Joint Torque Estimation Strategy Using Hill-Type Muscle Model and Neural Network. Journal of Medical and Biological Engineering 41(1):34–44. https://doi.org/10.1007/s40846-020-00539-2

    Article  Google Scholar 

  21. Wu Y, Chen J, Qiao H (2021) Anti-interference analysis of bio-inspired musculoskeletal robotic system. Neurocomputing 436:114–125. https://doi.org/10.1016/j.neucom.2021.01.054

    Article  Google Scholar 

  22. Toshimitsu Y, Kawaharazuka K, Nishiura M, Koga Y, Omura Y, Asano Y, Okada K, Kawasaki K, Inaba M (2021) Biomimetic Operational Space Control for Musculoskeletal Humanoid Optimizing Across Muscle Activation and Joint Nullspace. International Conference on Robotics and Automation. https://doi.org/10.1109/icra48506.2021.9561919

    Article  Google Scholar 

  23. Bernshteĭn NA (1969) The co-ordination and regulation of movements. Brain Res 13(3):624. https://doi.org/10.1016/0006-8993(69)90278-9

    Article  Google Scholar 

  24. Morasso P 1981) Spatial control of arm movements. Experiment Brain Res 42(2). https://doi.org/10.1007/bf00236911

  25. Takeda M, Sato T, Saito H, Iwasaki H, Nambu I, Wada Y (2019) Explanation of Fitts’w in Reaching Movement based on Human Arm Dynamics. Sci Report 9(1). https://doi.org/10.1038/s41598-019-56016-7

  26. Ueyama, Y (2021) Costs of position, velocity, and force requirements in optimal control induce triphasic muscle activation during reaching movement. Sci Report 11(1). https://doi.org/10.1038/s41598-021-96084-2

  27. Zhao Y, Zhang M, Wu H, He X, Todoh M (2023) Neuromechanics-Based Neural Feedback Controller for Planar Arm Reaching Movements. Bioengineering 10(4):436. https://doi.org/10.3390/bioengineering10040436

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rahatabad FN (2020) Modeling and Control Human Arm With FuzzyGenetic Muscle Model Based on Reinforcement Learning: The Muscle Activation Method. Int Clinical Neurosci J 7(3):138–146 https://doi.org/10.34172/icnj.2020.15

  29. Fischer F, Bachinski M, Klar M, Fleig A, Müller J (2021) Reinforcement learning control of a biomechanical model of the upper extremity. Sci Report 11(1). https://doi.org/10.1038/s41598-021-93760-1

  30. Gao Z, Xuan H-Z, Zhang H, Wan S, Choo K-KR (2019) Adaptive Fusion and Category-Level Dictionary Learning Model for Multiview Human Action Recognition. IEEE Int Things J 6(6):9280–9293. https://doi.org/10.1109/jiot.2019.2911669

    Article  Google Scholar 

  31. He C, Xu X, Zheng X, Xiong C, Li Q-L, Chen W, Sun B (2021) Anthropomorphic Reaching Movement Generating Method for Human-Like Upper Limb Robot. IEEE Trans Cybern 52(12):13225–13236. https://doi.org/10.1109/tcyb.2021.3107341

    Article  Google Scholar 

  32. Simoneau GG, Ulbrecht JS, Derr J, Cavanagh PR (1995) Role of somatosensory input in the control of human posture. Gait Posture 3(3):115–122. https://doi.org/10.1016/0966-6362(95)99061-o

    Article  Google Scholar 

  33. Kakei S, Lee J-H, Mitoma H, Tanaka H, Manto M, Hampe CS (2019) Contribution of the Cerebellum to Predictive Motor Control and Its Evaluation in Ataxic Patients. Front Hum Neurosci 13. https://doi.org/10.3389/fnhum.2019.00216

  34. Zhao Y, Zhang M, Ding S, Todoh M, Feng L (2022) Computational simulation for lifting motion of musculoskeletal arm. 2022 34th Chinese Control and Decision Conference (CCDC). https://doi.org/10.1109/ccdc55256.2022.10033644

  35. Zhao Y, Ding S, Todoh M (2022) Validate the force-velocity relation of the Hill’s muscle model from a molecular perspective. Front Bioeng Biotechnol 10. https://doi.org/10.3389/fbioe.2022.1006571

  36. Zhao Y, Li H, Wan S, Sekuboyina A, Hu X, Tetteh G, Piraud M, Menze BH (2019) Knowledge-Aided Convolutional Neural Network for Small Organ Segmentation. IEEE J Biomed Health Inf 23(4):1363–1373. https://doi.org/10.1109/jbhi.2019.2891526

    Article  Google Scholar 

  37. Bohte SM, La Poutré H, Kok JN (2002) Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans Neural Netw 13(2):426–435. https://doi.org/10.1109/72.991428

    Article  CAS  PubMed  Google Scholar 

  38. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572. https://doi.org/10.1109/tnn.2003.820440

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  39. Izhikevich EM (2006) Dynamical Systems in Neuroscience. https://doi.org/10.7551/mitpress/2526.003.0002 . https://doi.org/10.7551/mitpress/2526.001.0001

  40. Spüler M, Nagel SN, Rosenstiel W (2015) A spiking neuronal model learning a motor control task by reinforcement learning and structural synaptic plasticity. International Joint Conference on Neural Network. https://doi.org/10.1109/ijcnn.2015.7280521

    Article  Google Scholar 

  41. Kersen DEC, Tavoni G, Balasubramanian V (2022) Connectivity and dynamics in the olfactory bulb. PLOS Computational Biology 18(2):1009856. https://doi.org/10.1371/journal.pcbi.1009856

    Article  ADS  CAS  Google Scholar 

  42. Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Sciences of the United States of America 105(9):3593–3598. https://doi.org/10.1073/pnas.0712231105

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. Qu P, Yang L, Zheng W, Zhang Y (2022) A review of basic software for braininspired computing. CCF Transactions on High Performance Computing. https://doi.org/10.1007/s42514-022-00092-1

    Article  Google Scholar 

  44. Arena P, Fortuna L, Frasca M, Patané L (2009) Learning Anticipation via Spiking Networks: Application to Navigation Control. IEEE Trans Neural Netw 20(2):202–216. https://doi.org/10.1109/tnn.2008.2005134

  45. Oniz Y, Kaynak O (2014) Variable-structure-systems based approach for online learning of spiking neural networks and its experimental evaluation. J Franklin Instit-eng Appl Math 351(6):3269–3285. https://doi.org/10.1016/j.jfranklin.2014.03.002

  46. Morrison A, Diesmann M, Gerstner W (2008) Phenomenological models of synaptic plasticity based on spike timing. Biological Cybernetics 98(6):459–478. https://doi.org/10.1007/s00422-008-0233-1

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  47. Tang G, Michmizos KP (2018) Gridbot: An autonomous robot controlled by a spiking neural network mimicking the brain’s navigational system. Proceedings of the International Conference on Neuromorphic Systems 1–8. https://doi.org/10.1145/3229884.3229888

  48. Fernández J, Vargas M, García JA, Carrillo JD, Aguilar JA (2021) A biologicallike controller using improved spiking neural networks. Neurocomputing 463:237–250. https://doi.org/10.1016/j.neucom.2021.08.005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Todoh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhang, M., Wu, H. et al. A comprehensive sensorimotor control model emulating neural activities for planar human arm reaching movements. Appl Intell 54, 2508–2527 (2024). https://doi.org/10.1007/s10489-023-04796-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04796-x

Keywords

Navigation