Skip to main content
Log in

Dictionary cache transformer for hyperspectral image classification

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The spectral anomalies, limited training samples, and noisy training labels pose significant challenges to accurately classifying hyperspectral images (HSIs). To address these issues, we propose a novel dictionary cache transformer (DiCT) for HSIs classification, leveraging a combination of a group self-attention mechanism and a dictionary cache module. Specifically, the group self-attention mechanism binds the features local to the pixel into a group, thus alleviating the interference caused by pixel spectral anomalies. Furthermore, we capture representative structural information from different samples using their discriminative features to construct the dictionary cache module. The dictionary cache module enhances features by fusing sample features and the most similar element in the dictionary cache, thus improving the model’s resilience to noisy training labels. Experiments on five HSIs datasets demonstrate the proposed DiCT’s superiority in classification performance and robustness to noisy training labels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Adão T, Hruška J, Pádua L, Bessa J, Peres E, Morais R, Sousa J (2017) Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens 9(11):1110. https://doi.org/10.3390/rs9111110

    Article  Google Scholar 

  2. Zhong Y, Wang X, Xu Y, Wang S, Jia T, Hu X, Zhao J, Wei L, Zhang L (2018) Mini-UAVborne hyperspectral remote sensing: From observation and processing to applications. IEEE Geosci Remote Sens Mag 6(4):46–62. https://doi.org/10.1109/mgrs.2018.2867592

    Article  Google Scholar 

  3. Maxwell AE, Warner TA, Fang F (2018) Implementation of machine-learning classification in remote sensing: an applied review. Int. J. Remote Sens. 39(9):2784–2817. https://doi.org/10.1080/01431161.2018.1433343

    Article  Google Scholar 

  4. Zhao J, Zhong Y, Hu X, Wei L, Zhang L (2020) A robust spectral-spatial approach to identifying heterogeneous crops using remote sensing imagery with high spectral and spatial resolutions. Remote Sens Environ 239:111605. https://doi.org/10.1016/j.rse.2019.111605

    Article  Google Scholar 

  5. Ang KL, Seng JK (2021) Big data and machine learning with hyperspectral information in agriculture. IEEE Access 9:36699–36718. https://doi.org/10.1109/ACCESS.2021.3051196

    Article  Google Scholar 

  6. Aruffo E, Chiuri A, Angelini F, Artuso F, Cataldi D, Colao F, Fiorani L, Menicucci I, Nuvoli M, Pistilli M, Spizzichino V, Palucci A (2020) Hyperspectral fluorescence LIDAR based on a liquid crystal tunable filter for marine environment monitoring. Sensors 20(2):410. https://doi.org/10.3390/s20020410

    Article  Google Scholar 

  7. Thiele ST, Bnoulkacem Z, Lorenz S, Bordenave A, Menegoni N, Madriz Y, Dujoncquoy E, Gloaguen R, Kenter J (2022) Mineralogical mapping with accurately corrected shortwave infrared hyperspectral data acquired obliquely from uavs. Remote Sens 14(1). https://doi.org/10.3390/rs14010005

  8. Kumar B, Dikshit O, Gupta A, Singh MK (2020) Feature extraction for hyperspectral image classification: a review. Int J Remote Sens 41(16):6248–6287. https://doi.org/10.1080/01431161.2020.1736732

    Article  Google Scholar 

  9. Ghamisi P, Plaza J, Chen Y, Li J, Plaza AJ (2017) Advanced spectral classifiers for hyperspectral images: A review. IEEE Geosci Remote Sens Mag 5(1):8–32. https://doi.org/10.1109/MGRS.2016.2616418

    Article  Google Scholar 

  10. Mu C, Zeng Q, Liu Y, Qu Y (2021) A two-branch network combined with robust principal component analysis for hyperspectral image classification. IEEE Geosci Remote Sens Lett 18(12):2147–2151. https://doi.org/10.1109/LGRS.2020.3013707

    Article  Google Scholar 

  11. Jayaprakash C, Damodaran BB, Viswanathan S, Soman KP (2020) Randomized independent component analysis and linear discriminant analysis dimensionality reduction methods for hyperspectral image classification. J Appl Remote Sens 14(3):1–24. https://doi.org/10.1117/1.JRS.14.036507

    Article  Google Scholar 

  12. Yu H, Xu Z, Wang Y, Jiao T, Guo Q (2021) The use of kpca over subspaces for cross-scale superpixel based hyperspectral image classification. Remote Sens Lett 12(5):470–477. https://doi.org/10.1080/2150704X.2021.1897180

    Article  Google Scholar 

  13. Zhang L, Zhang L, Du B, You J, Tao D (2019) Hyperspectral image unsupervised classification by robust manifold matrix factorization. Inf Sci 485:154–169. https://doi.org/10.1016/j.ins.2019.02.008

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang W, Huang Y, Wu Z, Yin J, Chen Q (2021) A multi-kernel mode using a local binary pattern and random patch convolution for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens 14:4607–4620. https://doi.org/10.1109/JSTARS.2021.3076198

    Article  Google Scholar 

  15. Cao D, Zhang M, Li W, Ran Q (2021) Hyperspectral and infrared image collaborative classification based on morphology feature extraction. IEEE J Sel Top Appl Earth Observ Remote Sens 14:4405–4416. https://doi.org/10.1109/JSTARS.2021.3072843

    Article  Google Scholar 

  16. Paoletti ME, Haut JM, Plaza J, Plaza A (2019) Deep learning classifiers for hyperspectral imaging: A review. ISPRS-J Photogramm Remote Sens 158:279–317. https://doi.org/10.1016/j.isprsjprs.2019.09.006

    Article  Google Scholar 

  17. Lu X, Zheng X, Yuan Y (2017) Remote sensing scene classification by unsupervised representation learning. IEEE Trans. Geosci. Remote. Sens. 55(9):5148–5157. https://doi.org/10.1109/TGRS.2017.2702596

    Article  Google Scholar 

  18. Han K, Wang Y, Chen H, Chen X, Guo J, Liu Z, Tang Y, Xiao A, Xu C, Xu Y, Yang Z, Zhang Y, Tao D (2023) A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 45(1):87–110. https://doi.org/10.1109/TPAMI.2022.3152247

    Article  Google Scholar 

  19. Espinosa F, Bartolomé A, Hernández PV, Rodriguez-Sánchez MC (2022) Contribution of singular spectral analysis to forecasting and anomalies detection of indoors air quality. Sensors 22(8):3054. https://doi.org/10.3390/s22083054

    Article  Google Scholar 

  20. Zhou H, Zhang X, Zhang C, Ma Q (2023) Quaternion convolutional neural networks for hyperspectral image classification. Eng Appl Artif Intell 123:106234. https://doi.org/10.1016/j.engappai.2023.106234

    Article  Google Scholar 

  21. Zhou H, Zhang X, Zhang C, Ma Q (2023) Vision transformer with contrastive learning for hyperspectral image classification. IEEE Geosci Remote Sens Lett 20:1–5. https://doi.org/10.1109/LGRS.2023.3255867

    Article  Google Scholar 

  22. Zhang X, Sun Y, Jiang K, Li C, Jiao L, Zhou H (2018) Spatial sequential recurrent neural network for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens 11(11):4141–4155. https://doi.org/10.1109/JSTARS.2018.2844873

    Article  Google Scholar 

  23. Ghaderizadeh S, Abbasi-Moghadam D, Sharifi A, Zhao N, Tariq A (2021) Hyperspectral image classification using a hybrid 3d–2d convolutional neural networks. IEEE J Sel Top Appl Earth Observ Remote Sens 14:7570–7588. https://doi.org/10.1109/JSTARS.2021.3099118

    Article  Google Scholar 

  24. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. https://doi.org/10.1109/CVPR.2016.90

  25. de Santana Correia A, Colombini EL (2022) Attention, please! a survey of neural attention models in deep learning Artif Intell Rev. https://doi.org/10.1007/s10462-022-10148-x

  26. Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between capsules. In: Guyon I, von Luxburg U, Bengio S, Wallach HM, Fergus R, Vishwanathan SVN, Garnett R (eds) Advances in Neural Information Processing Systems 30. Long Beach, CA, USA, pp 3856–3866

    Google Scholar 

  27. Zhou H, Zhang C, Zhang X, Ma Q (2023) Image classification based on quaternion-valued capsule network. Appl Intell 53(5):5587–5606. https://doi.org/10.1007/s10489-022-03849-x

    Article  Google Scholar 

  28. Zhang M, Luo H, Song W, Mei H, Su C (2021) Spectral-spatial offset graph convolutional networks for hyperspectral image classification. Remote Sens 13(21):4342–4364. https://doi.org/10.3390/rs13214342

    Article  Google Scholar 

  29. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: Hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision, pp. 9992–10002. https://doi.org/10.1109/ICCV48922.2021.00986

  30. Yang X, Cao W, Lu Y, Zhou Y (2022) Hyperspectral image transformer classification networks. IEEE Trans Geosci Remote Sensing 60:1–15. https://doi.org/10.1109/TGRS.2022.3171551

    Article  Google Scholar 

  31. Qing Y, Liu W, Feng L, Gao W (2021) Improved transformer net for hyperspectral image classification. Remote Sens 13(11). https://doi.org/10.3390/rs13112216

  32. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: 2017 31st Conference on Neural Information Processing Systems,NRPS. NIPS’17, pp. 6000–6010. Curran Associates Inc., Red Hook, NY, USA

  33. Wang S, Cai J, Lin Q, Guo W (2019) An overview of unsupervised deep feature representation for text categorization. IEEE Trans Comput Soc Syst 6(3):504–517. https://doi.org/10.1109/TCSS.2019.2910599

    Article  Google Scholar 

  34. Sun L, Zou H, Wei J, Cao X, He S, Li M, Liu S (2023) Semantic segmentation of highresolution remote sensing images based on sparse self-attention and feature alignment. Remote Sens 15(6):1598. https://doi.org/10.3390/rs15061598

    Article  Google Scholar 

  35. Chen CR, Fan Q, Panda R (2021) Crossvit: Cross-attention multi-scale vision transformer for image classification. In: 2021 IEEE/CVF International Conference on Computer Vision, pp. 347–356. https://doi.org/10.1109/ICCV48922.2021.00041

  36. Jiang J, Ma J, Liu X (2022) Multilayer spectral-spatial graphs for label noisy robust hyperspectral image classification. IEEE Trans Neural Netw Learn Syst 33(2):839–852. https://doi.org/10.1109/TNNLS.2020.3029523

    Article  Google Scholar 

  37. Tu B, Zhang X, Kang X, Zhang G, Li S (2019) Density peak-based noisy label detection for hyperspectral image classification. IEEE Trans Geosci Remote Sensing 57(3):1573–1584. https://doi.org/10.1109/tgrs.2018.2867444

    Article  Google Scholar 

  38. Tu B, Zhou C, Liao X, Xu Z, Peng Y, Ou X (2020) Hierarchical structure-based noisy labels detection for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 13:2183–2199. https://doi.org/10.1109/jstars.2020.2994162

    Article  Google Scholar 

  39. Zhang W, Wang D, Tan X (2018) Robust class-specific autoencoder for data cleaning and classification in the presence of label noise. Neural Process. Lett 50(2):1845–1860. https://doi.org/10.1007/s11063-018-9963-9

    Article  Google Scholar 

  40. Wang Y, Ma X, Chen Z, Luo Y, Yi J, Bailey J (2019) Symmetric cross entropy for robust learning with noisy labels. In: 2019 16th Proceedings of the IEEE/CVF International Conference on Computer Vision,ICCV, pp. 322–330

  41. Ghosh A, Kumar H, Sastry PS (2017) Robust loss functions under label noise for deep neural networks. Proceedings of the AAAI Conference on Artificial Intelligence 31(1). https://doi.org/10.1609/aaai.v31i1.10894

  42. Vane G, Green R, Chrien T, Enmark H, Hansen E, Porter W (1993) The airborne visible/ infrared imaging spectrometer (aviris). Remote Sens Environ 44(2):127–143. https://doi.org/10.1016/0034-4257(93)90012-M. Airbone Imaging Spectrometry

  43. Zhong Y, Hu X, Luo C, Wang X, Zhao J, Zhang L (2020) WHU-hi: UAV-borne hyperspectral with high spatial resolution (h2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF. Remote Sens Environ 250:112012. https://doi.org/10.1016/j.rse.2020.112012

    Article  Google Scholar 

  44. Cen Y, Zhang L, Zhang X, Wang Y, Qi W, Tang S, Zhang P (2020) Aerial hyperspectral remote sensing classification dataset of xiongan new area (matiwan village). J Remote Sensing 24(11):1299–1306. https://doi.org/10.11834/jrs.20209065

  45. Mantas CJ, Castellano JG, Moral-García S, Abellán J (2018) A comparison of random forest based algorithms: random credal random forest versus oblique random forest. Soft Comput 23(21):10739–10754. https://doi.org/10.1007/s00500-018-3628-5

    Article  Google Scholar 

  46. Liu H, Dai Z, So D, Le QV (2021) Pay attention to mlps. In: 2021 34th Advances in Neural Information Processing Systems,NIPS 34:9204–9215. https://doi.org/10.48550/arXiv.2105.08050

  47. Chen S, Xie E, GE C, Chen R, Liang D, Luo P (2022) CycleMLP: A MLP-like architecture for dense prediction. In: 2022 10th International Conference on Learning Representations, ICLR, pp. 1–11

  48. Paoletti ME, Haut JM, Fernandez-Beltran R, Plaza J, Plaza A, Li J, Pla F (2019) Capsule networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sensing 57(4):2145–2160. https://doi.org/10.1109/tgrs.2018.2871782

  49. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N (2021) An image is worth 16x16 words: Transformers for image recognition at scale. In: 2021 5th International Conference on Learning Representations, ICLR, pp. 1–21

  50. Xu Y, Li Z, Li W, Du Q, Liu C, Fang Z, Zhai L (2022) Dual-channel residual network for hyperspectral image classification with noisy labels. IEEE Trans Geosci Remote Sensing 60:1–11. https://doi.org/10.1109/tgrs.2021.3057689

    Article  Google Scholar 

  51. Loshchilov I, Hutter F (2019) Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, pp. 1–18

  52. Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(11):2579–2605

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the reviewers for their insightful remarks and ideas on how to improve the paper’s quality.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 11871104 and 12131006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Zhang, X., Zhang, C. et al. Dictionary cache transformer for hyperspectral image classification. Appl Intell 53, 26725–26749 (2023). https://doi.org/10.1007/s10489-023-04934-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04934-5

Keywords

Navigation