Skip to main content
Log in

Non-linear statistical image watermark detector

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract 

Invisibility, robustness and payload are three indispensable and contradictory properties for any image watermarking systems. Recently, to achieve the tradeoff among above three requirements, statistical watermarking schemes have gained a lot of attention. Most existing approaches, however, often bear a number of drawbacks, in particular: (i) They all employ directly transform coefficients, which are always fragile to some attacks, for watermark embedding and statistical modeling; (ii) The adopted model cannot capture accurately the statistical distributions of the transform coefficients; (iii) Most of them simply use the linear function for watermark embedding, which often either miss higher capacity or may cause visible distortions. This has motivated us to introduce in this paper a novel non-linear statistical image watermark detector based on undecimated discrete wavelet transform (UDWT)-polar complex exponential transform (PCET) magnitude and the exponentiated Cauchy-Rayleigh distribution. We begin with a detailed study on the robustness and statistical characteristics of local UDWT-PCET magnitudes of natural images. This study reveals the strong robustness and highly non-Gaussian marginal statistics of local UDWT-PCET magnitudes. We also find that, with a small number of parameters, the new exponentiated Cauchy-Rayleigh model can capture accurately the statistical properties of the robust UDWT-PCET magnitudes of the image. Meanwhile, the statistical model parameters can be computed effectively by using the genetic simulated annealing (GSA)-based maximum likelihood (ML) estimation. Based on these findings, we finally develop a new non-linear statistical image watermark detector using the exponentiated Cauchy-Rayleigh PDF and locally most powerful (LMP) decision rule. Also, we use the exponentiated Cauchy-Rayleigh statistical model to derive the closed-form expressions for the watermark detector. Extensive experimental results show the superiority of the proposed blind watermark detector over most of the state-of-the-art methods recently proposed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Data Availability Statement The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Huang Y, Niu B, Guan H (2019) Enhancing image watermarking with adaptive embedding parameter and PSNR guarantee. IEEE Trans on Multimedia 21(10):2447–2460

    Article  Google Scholar 

  2. Kalantari NK, Ahadi SM, Vafadust M (2010) A robust image watermarking in the Ridgelet domain using universally optimum decoder. IEEE Trans Circ Syst Video Technol 20(3):396–406

    Article  Google Scholar 

  3. Bhinder P, Jindal N, Singh K (2020) An improved robust image-adaptive watermarking with two watermarks using statistical decoder. Multimed Tools Appl 79:183–217

    Article  Google Scholar 

  4. Mairgiotis A, Kondi LP, Yang Y (2017) DCT/DWT blind multiplicative watermarking through student-t distribution. 2017 IEEE International Conference on Image Processing (ICIP 2017), Beijing, China,pp 520–524

  5. Wang XY, Zhang SY, Wen TT, Yang HY, Niu PP (2019) Coefficient difference based watermark detector in nonsubsampled Contourlet transform domain. Inf Sci 503:274–290

    Article  MathSciNet  MATH  Google Scholar 

  6. Bi HB, Liu Y, Wu MM, Ge YL (2016) NSCT domain additive watermark detection using RAO hypothesis test and Cauchy distribution. Math Probl Eng 2016:4065215. https://doi.org/10.1155/2016/4065215

  7. Wang X-Y, Zhang S-Y, Wang L, Yang H-Y, Niu P-P (2019) Locally optimum image watermark decoder by modeling NSCT domain difference coefficients with vector based Cauchy distribution. J Vis Commun Image Represent 62:309–329

    Article  Google Scholar 

  8. Niu PP, Shen X, Song YF, Liu YN, Wang XY (2020) Locally optimum watermark decoder in NSST domain using RSS-based Cauchy distribution. Multimed Tools Appl 79:33071–33101

    Article  Google Scholar 

  9. Barazandeh M, Amirmazlaghani M (2016) A new statistical detector for additive image watermarking based on dual-tree complex wavelet transform. 2016 2nd International Conference of Signal Processing and Intelligent Systems (ICSPIS), Tehran, Iran

  10. Zebbiche K, Khelifi F, Loukhaoukha K (2018) Robust additive watermarking in the DTCWT domain based on perceptual masking. Multimed Tools Appl 77:21281–21304

    Article  Google Scholar 

  11. Ahmaderaghi B, Kurugollu F, Rincon J (2018) Blind image watermark detection algorithm based on discrete Shearlet transform using statistical decision theory. IEEE Trans Comput Imaging 4:46–59

    Article  MathSciNet  Google Scholar 

  12. Amirmazlaghani M (2018) A novel Contourlet domain watermark detector for copyright protection. Image and Video Processing. https://arxiv.org/abs/1801.07023

  13. Etemad S, Amirmazlaghani M (2017) A new multiplicative watermark detector in the Contourlet domain using t location-scale distribution. Pattern Recogn 77:99–112

    Article  Google Scholar 

  14. Santhi V (2017) Adaptive color image watermarking scheme using Weibull distribution. In: Dey N., Santhi V (eds.) Intelligent Techniques in Signal Processing for Multimedia Security. Studies in Computational Intelligence, 660, pp 453–468

  15. Sadreazami H, Amini M (2018) A robust image watermarking scheme using local statistical distribution in the Contourlet domain. IEEE Trans Circuits and Systems II: Express Briefs 66:151–155

    Google Scholar 

  16. Rabizadeh M, Amirmazlaghani M, Ahmadian-Attari M (2016) A new detector for contourlet domain multiplicative image watermarking using Bessel K form distribution. J Vis Commun Image Represent 40:324–334

    Article  Google Scholar 

  17. Sadreazami H, Ahmad MO, Swamy MNS (2017) A robust multiplicative watermark detector for color images in sparse domain. IEEE Trans Circuits Syst II Exp Briefs 62:1159–1163

    Google Scholar 

  18. Amirmazlaghani M (2019) Heteroscedastic watermark detector in the Contourlet domain. IET Comput Vision 13(3):249–260

    Article  MathSciNet  Google Scholar 

  19. Luan D, Qin Y, Yong L, Shu YD (2017) Full band watermarking in DCT domain with Weibull model. Multimed Tools Appl 76:1983–2000

    Article  Google Scholar 

  20. Sadreazami H, Ahmad MO, Swamy MNS (2015) Optimum multiplicative watermark detector in Contourlet domain using the normal inverse Gaussian distribution. 2015 IEEE International Symposium on Circuits and Systems (ISCAS). Lisbon, Portugal, pp 1050-1053

  21. Amini M, Sadreazami H, Ahmad MO (2018) A channel-dependent statistical watermark detector for color images. IEEE Trans Multimed 21(1):65–73

    Article  Google Scholar 

  22. Bian Y, Liang SL (2013) Image watermark detection in the wavelet domain using Bessel K densities . IEEE Trans Image Process 7(4):281–289

  23. Amini M, Ahmad M, Swamy M (2018) A robust multibit multiplicative watermark decoder using vector-based hidden Markov model in wavelet domain. IEEE Trans Circuits Syst Video Technol 28(2):40–413

    Article  Google Scholar 

  24. Amirmazlaghani M (2016) Additive watermark detection in the wavelet domain using 2D-GARCH model. Inf Sci 370–371:1–17

    Article  MathSciNet  Google Scholar 

  25. Amini M, Sadreazami H, Ahmad MO, Swamy M (2017) Multichannel color image watermark detection utilizing vector-based hidden Markov model. 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA

  26. Hill PR, Anantrasirichai N, Achim A, Al-Mualla ME, Bull DR (2015) Undecimated dual-tree complex Wavelet transforms. Signal Process: Image Commun 35:61–70

    Google Scholar 

  27. Yap PT, Jiang X, Kot AC (2010) Two-dimensional polar harmonic transforms for invariant image representation. IEEE Trans Pattern Anal Mach Intell 32(7):1259–1270

    Article  Google Scholar 

  28. Niu P, Wang L, Tian J, Zhang S, Wang X (2021) A statistical color image watermarking scheme using local QPCET and Cauchy-Rayleigh distribution. Circuits Syst Signal Process 40:4516–4545

    Article  Google Scholar 

  29. Vedovatto T, Nascimento ADCD (2017) Closed-form mathematical expressions for the exponentiated Cauchy-Rayleigh distribution. Statistics. https://doi.org/10.13140/RG.2.2.11877.40161

    Article  Google Scholar 

  30. Winker P, Gilli M (2004) Applications of optimization heuristics to estimation and modeling problems. Comput Stat Data Anal 47(2):211–223

    Article  MATH  Google Scholar 

  31. Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220(4598):498–516

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang Z, Tian Z, Yuan Z (2007) GSA-based maximum likelihood estimation for threshold vector error correction model. Comput Stat Data Anal 52:109–120

    Article  MathSciNet  MATH  Google Scholar 

  33. Zong T, Xiang Y, Natgunanathan I et al (2015) Robust histogram shape-based method for image watermarking. IEEE Trans Circuits Syst Video Technol 25(5):717–729

    Article  Google Scholar 

  34. Wang X-Y, Niu P-P, Tian J, Tianz J-L A new statistical image watermark detector in RHFMs domain using Beta exponential distribution. Soft Computing. https://doi.org/10.1007/s00500-022-06836-z

  35. Yu X, Ye X, Zhang S (2022) Floating pollutant image target extraction algorithm based on immune extremum region. Digit Signal Process: Rev J 123:103442

    Article  Google Scholar 

  36. Ngo L, Cha J, Han JH (2020) Deep neural network regression for automated retinal layer segmentation in optical coherence tomography images. IEEE Trans Image Process 29:303–312

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported partially by the National Natural Science Foundation of China (Nos. 61472171 & 61701212), Key Scientific Research Project of Liaoning Provincial Education Department (No. LJKZZ20220115), and Scientific Research Project of Liaoning Provincial Education Department (No. LJKMZ20221420).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangyang Wang or Panpan Niu.

Ethics declarations

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Appendix

Appendix A: Appendix

Under \(H_{0}\) hypothesis, the mean \(\mu_{0}\) and variance \(\sigma_{0}^{2}\) of the LO statistic \(l_{LO} ({\mathbf{y}})\) can be respectively derived as

$$\begin{gathered} \mu_{0} = E[l_{LO} ({\mathbf{y}})|H_{0} ] = E[l_{LO} ({\mathbf{x}})] \hfill \\ \;\;\;\;\; = E\left[ {\sum\limits_{i = 1}^{L} { - ab^{{x_{i} }} w_{i} \cdot \left( {\frac{{\left( {\lambda^{2} + x_{i}^{2} } \right)^{\frac{3}{2}} + \lambda x_{i}^{2} \left( {\beta { - }1} \right)}}{{x_{i} \left( {\lambda^{2} + x_{i}^{2} } \right)^{\frac{3}{2}} }}\left[ {1 - \frac{\lambda }{{\sqrt {\lambda^{2} + x_{i}^{2} } }}} \right]^{{{ - }1}} - \frac{{3x_{i} - \log b \cdot \left( {\lambda^{2} + x_{i}^{2} } \right)}}{{\lambda^{2} + x_{i}^{2} }}} \right)} } \right] \hfill \\ \;\;\;\;\; = \sum\limits_{i = 1}^{L} {\left( {E\left( { - ab^{{x_{i} }} w_{i} } \right)E\left( {\frac{{\left( {\lambda^{2} + x_{i}^{2} } \right)^{\frac{3}{2}} + \lambda x_{i}^{2} \left( {\beta { - }1} \right)}}{{x_{i} \left( {\lambda^{2} + x_{i}^{2} } \right)^{\frac{3}{2}} }}\left[ {1 - \frac{\lambda }{{\sqrt {\lambda^{2} + x_{i}^{2} } }}} \right]^{{{ - }1}} - \frac{{3x_{i} - \log b \cdot \left( {\lambda^{2} + x_{i}^{2} } \right)}}{{\lambda^{2} + x_{i}^{2} }}} \right)} \right)} \hfill \\ \begin{array}{*{20}c} {} & { = 0} \\ \end{array} \hfill \\ \end{gathered}$$
(32)

and

$$\begin{gathered} \sigma_{{0}}^{{2}} = {\text{var}} [l_{LO} ({\varvec{y}})|H_{0} ] = {\text{var}} [l_{LO} |{\varvec{x}}] \hfill \\ \;\;\;\;\; = E\left[ {\left( {\sum\limits_{i = 1}^{L} { - ab^{{x_{i} }} w_{i} \cdot \left( {\frac{{\left( {\lambda^{2} + x_{i}^{2} } \right)^{\frac{3}{2}} + \lambda x_{i}^{2} \left( {\beta { - }1} \right)}}{{x_{i} \left( {\lambda^{2} + x_{i}^{2} } \right)^{\frac{3}{2}} }}\left[ {1 - \frac{\lambda }{{\sqrt {\lambda^{2} + x_{i}^{2} } }}} \right]^{{{ - }1}} - \frac{{3x_{i} - \log b \cdot \left( {\lambda^{2} + x_{i}^{2} } \right)}}{{\lambda^{2} + x_{i}^{2} }}} \right)} } \right)^{2} } \right] \hfill \\ \begin{array}{*{20}c} {} & { = \sum\limits_{i} {E\left[ {\left( { - ab^{{x_{i} }} w_{i} \cdot \left( {\frac{{\left( {\lambda^{2} + x_{i}^{2} } \right)^{\frac{3}{2}} + \lambda x_{i}^{2} \left( {\beta { - }1} \right)}}{{x_{i} \left( {\lambda^{2} + x_{i}^{2} } \right)^{\frac{3}{2}} }}\left[ {1 - \frac{\lambda }{{\sqrt {\lambda^{2} + x_{i}^{2} } }}} \right]^{{{ - }1}} - \frac{{3x_{i} - \log b \cdot \left( {\lambda^{2} + x_{i}^{2} } \right)}}{{\lambda^{2} + x_{i}^{2} }}} \right)} \right)^{2} } \right]} } \\ \end{array} \hfill \\ \; + \sum\limits_{l} {\sum\limits_{l \ne i} {E\left[ \begin{gathered} - ab^{{x_{i} }} w_{l} \cdot \left( {\frac{{\left( {\lambda^{2} + x_{l}^{2} } \right)^{\frac{3}{2}} + \lambda x_{l}^{2} \left( {\beta { - }1} \right)}}{{x_{l} \left( {\lambda^{2} + x_{l}^{2} } \right)^{\frac{3}{2}} }}\left[ {1 - \frac{\lambda }{{\sqrt {\lambda^{2} + x_{l}^{2} } }}} \right]^{{{ - }1}} - \frac{{3x_{l} - \log b \cdot \left( {\lambda^{2} + x_{l}^{2} } \right)}}{{\lambda^{2} + x_{l}^{2} }}} \right) \cdot \hfill \\ - ab^{{x_{i} }} w_{i} \cdot \left( {\frac{{\left( {\lambda^{2} + x_{i}^{2} } \right)^{\frac{3}{2}} + \lambda x_{i}^{2} \left( {\beta { - }1} \right)}}{{x_{i} \left( {\lambda^{2} + x_{i}^{2} } \right)^{\frac{3}{2}} }}\left[ {1 - \frac{\lambda }{{\sqrt {\lambda^{2} + x_{i}^{2} } }}} \right]^{{{ - }1}} - \frac{{3x_{i} - \log b \cdot \left( {\lambda^{2} + x_{i}^{2} } \right)}}{{\lambda^{2} + x_{i}^{2} }}} \right) \hfill \\ \end{gathered} \right]} } \hfill \\ \;\;\;\;\; = \sum\limits_{i}^{{}} {\left( {ab^{{x_{i} }} } \right)^{2} \cdot \left( {\frac{{\left( {\lambda^{2} + x_{i}^{2} } \right)^{\frac{3}{2}} + \lambda x_{i}^{2} \left( {\beta { - }1} \right)}}{{x_{i} \left( {\lambda^{2} + x_{i}^{2} } \right)^{\frac{3}{2}} }}\left[ {1 - \frac{\lambda }{{\sqrt {\lambda^{2} + x_{i}^{2} } }}} \right]^{{{ - }1}} - \frac{{3x_{i} - \log b \cdot \left( {\lambda^{2} + x_{i}^{2} } \right)}}{{\lambda^{2} + x_{i}^{2} }}} \right)^{2} } \hfill \\ \end{gathered}$$
(33)

Under \(H_{1}\) hypothesis, the mean \(\mu_{1}\) and variance \(\sigma_{1}^{2}\) of the LO statistic \(l_{LO} ({\mathbf{y}})\) can be respectively derived as

$$\begin{gathered} \mu_{1} = E[l_{LO} ({\mathbf{y}})|H_{1} ] = E[l_{LO} |{\mathbf{x}} + {\mathbf{w}}^{\prime}] \hfill \\ \;\;\;\; = E\left[ {\sum\limits_{i = 1}^{L} { - ab^{{x_{i} + w_{i} ^{\prime}}} w_{i} \cdot \left( \begin{gathered} \frac{{\left( {\lambda^{2} + \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} } \right)^{\frac{3}{2}} + \lambda \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} \left( {\beta { - }1} \right)}}{{\left( {x_{i} + w_{i} ^{\prime}} \right)\left( {\lambda^{2} + \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} } \right)^{\frac{3}{2}} }} \cdot \left[ {1 - \frac{\lambda }{{\sqrt {\lambda^{2} + \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} } }}} \right]^{{{ - }1}} \hfill \\ - \frac{{3\left( {x_{i} + w_{i} ^{\prime}} \right) - \log b \cdot \left( {\lambda^{2} + \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} } \right)}}{{\lambda^{2} + \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} }} \hfill \\ \end{gathered} \right)} } \right] \hfill \\ \;\;\;\; = \sum\limits_{i = 1}^{L} {\left( {c_{i} + d_{i} } \right)} \hfill \\ \end{gathered}$$
(34)

where

$$\begin{gathered} c_{i} = \left( {\frac{{ - ab^{{x_{i} + ab^{{x_{i} }} }} }}{2}} \right) \cdot \hfill \\ \left( {\frac{{\left( {\lambda^{2} + \left( {x_{i} + ab^{{x_{i} }} } \right)^{2} } \right)^{\frac{3}{2}} + \lambda \left( {x_{i} + ab^{{x_{i} }} } \right)^{2} \left( {\beta { - }1} \right)}}{{\left( {x_{i} + ab^{{x_{i} }} } \right)\left( {\lambda^{2} + \left( {x_{i} + ab^{{x_{i} }} } \right)^{2} } \right)^{\frac{3}{2}} }} \cdot \left[ {1 - \frac{\lambda }{{\sqrt {\lambda^{2} + \left( {x_{i} + ab^{{x_{i} }} } \right)^{2} } }}} \right]^{{{ - }1}} - \frac{{3\left( {x_{i} + ab^{{x_{i} }} } \right) - \log b \cdot \left( {\lambda^{2} + \left( {x_{i} + ab^{{x_{i} }} } \right)^{2} } \right)}}{{\lambda^{2} + \left( {x_{i} + ab^{{x_{i} }} } \right)^{2} }}} \right)\;\;\;\;\;\;\;\;\;\; \hfill \\ d_{i} = \left( {\frac{{ab^{{x_{i} { - }ab^{{x_{i} }} }} }}{2}} \right) \cdot \hfill \\ \left( {\frac{{\left( {\lambda^{2} + \left( {x_{i} - ab^{{x_{i} }} } \right)^{2} } \right)^{\frac{3}{2}} + \lambda \left( {x_{i} - ab^{{x_{i} }} } \right)^{2} \left( {\beta { - }1} \right)}}{{\left( {x_{i} - ab^{{x_{i} }} } \right)\left( {\lambda^{2} + \left( {x_{i} - ab^{{x_{i} }} } \right)^{2} } \right)^{\frac{3}{2}} }} \cdot \left[ {1 - \frac{\lambda }{{\sqrt {\lambda^{2} + \left( {x_{i} - ab^{{x_{i} }} } \right)^{2} } }}} \right]^{{{ - }1}} - \frac{{3\left( {x_{i} - ab^{{x_{i} }} } \right) - \log b \cdot \left( {\lambda^{2} + \left( {x_{i} - ab^{{x_{i} }} } \right)^{2} } \right)}}{{\lambda^{2} + \left( {x_{i} - ab^{{x_{i} }} } \right)^{2} }}} \right) \hfill \\ \end{gathered}$$

and

$$\begin{gathered} \sigma_{{1}}^{{2}} = E[((l_{LO} ({\varvec{y}})|H_{1} ) - m_{1} )^{2} ] \hfill \\ \;\;\;\;\; = \sum\limits_{i}^{{}} {E\left[ {\left( { - ab^{{x_{i} + w_{i} ^{\prime}}} w_{i} \cdot \left( \begin{gathered} \frac{{\left( {\lambda^{2} + \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} } \right)^{\frac{3}{2}} + \lambda \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} \left( {\beta { - }1} \right)}}{{\left( {x_{i} + w_{i} ^{\prime}} \right)\left( {\lambda^{2} + \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} } \right)^{\frac{3}{2}} }} \cdot \left[ {1 - \frac{\lambda }{{\sqrt {\lambda^{2} + \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} } }}} \right]^{{{ - }1}} \hfill \\ - \frac{{3\left( {x_{i} + w_{i} ^{\prime}} \right) - \log b \cdot \left( {\lambda^{2} + \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} } \right)}}{{\lambda^{2} + \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} }} \hfill \\ \end{gathered} \right) - c_{i} - d_{i} } \right)^{2} } \right]} \hfill \\ \hfill \\ \begin{array}{*{20}c} {} & + \\ \end{array} \sum\limits_{l} {\sum\limits_{l \ne i} {E\left[ \begin{gathered} \left( { - ab^{{x_{l} + w_{l} ^{\prime}}} w_{l} \cdot \left( \begin{gathered} \frac{{\left( {\lambda^{2} + \left( {x_{l} + w_{l} ^{\prime}} \right)^{2} } \right)^{\frac{3}{2}} + \lambda \left( {x_{l} + w_{l} ^{\prime}} \right)^{2} \left( {\beta { - }1} \right)}}{{\left( {x_{l} + w_{l} ^{\prime}} \right)\left( {\lambda^{2} + \left( {x_{l} + w_{l} ^{\prime}} \right)^{2} } \right)^{\frac{3}{2}} }} \cdot \left[ {1 - \frac{\lambda }{{\sqrt {\lambda^{2} + \left( {x_{l} + w_{l} ^{\prime}} \right)^{2} } }}} \right]^{{{ - }1}} \hfill \\ - \frac{{3\left( {x_{l} + w_{l} ^{\prime}} \right) - \log b \cdot \left( {\lambda^{2} + \left( {x_{l} + w_{l} ^{\prime}} \right)^{2} } \right)}}{{\lambda^{2} + \left( {x_{l} + w_{l} ^{\prime}} \right)^{2} }} \hfill \\ \end{gathered} \right) - c_{l} - d_{l} } \right) \cdot \hfill \\ \left( { - ab^{{x_{i} + w_{i} ^{\prime}}} w_{i} \cdot \left( \begin{gathered} \frac{{\left( {\lambda^{2} + \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} } \right)^{\frac{3}{2}} + \lambda \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} \left( {\beta { - }1} \right)}}{{\left( {x_{i} + w_{i} ^{\prime}} \right)\left( {\lambda^{2} + \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} } \right)^{\frac{3}{2}} }} \cdot \left[ {1 - \frac{\lambda }{{\sqrt {\lambda^{2} + \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} } }}} \right]^{{{ - }1}} \hfill \\ - \frac{{3\left( {x_{i} + w_{i} ^{\prime}} \right) - \log b \cdot \left( {\lambda^{2} + \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} } \right)}}{{\lambda^{2} + \left( {x_{i} + w_{i} ^{\prime}} \right)^{2} }} \hfill \\ \end{gathered} \right) - c_{i} - d_{i} } \right) \hfill \\ \end{gathered} \right]} } \hfill \\ \;\;\;\;\; = \sum\limits_{i}^{{}} {\left( {c_{i} - d_{i} } \right)^{2} } \hfill \\ \end{gathered}$$
(35)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ma, R., Xu, X. et al. Non-linear statistical image watermark detector. Appl Intell 53, 29242–29266 (2023). https://doi.org/10.1007/s10489-023-05061-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-05061-x

Keywords

Navigation