Skip to main content
Log in

Deep learning applications in games: a survey from a data perspective

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive review of deep learning applications in the video game industry, focusing on how these techniques can be utilized in game development, experience, and operation. As relying on computation techniques, the game world can be viewed as an integration of various complex data. This examines the use of deep learning in processing various types of game data. The paper classifies the game data into asset data, interaction data, and player data, according to their utilization in game development, experience, and operation, respectively. Specifically, this paper discusses deep learning applications in generating asset data such as object images, 3D scenes, avatar models, and facial animations; enhancing interaction data through improved text-based conversations and decision-making behaviors; and analyzing player data for cheat detection and match-making purposes. Although this review may not cover all existing applications of deep learning, it aims to provide a thorough presentation of the current state of deep learning in the gaming industry and its potential to revolutionize game production by reducing costs and improving the overall player experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availibility Statement

No datasets were generated or analysed during the current study

Notes

  1. https://www.midjourney.com/app/

  2. https://openai.com/blog/chatgpt

  3. https://openai.com/blog/openai-codex

  4. Created by Jason M. Allen using the generative Artificial Intelligence platform Midjourney. The painting became a news story when it won the 2022 Colorado State Fair’s annual fine art competition on 5 September, becoming one of the first AI generated images to win such a prize.

  5. https://civitai.com/

  6. https://github.com/AUTOMATIC1111/stable-diffusion-webui

  7. https://en.wikipedia.org/wiki/Electronic_Arts

  8. https://blog.playstation.com/archive/2018/07/09/how-milestone-created-the-breathtaking-bikers-paradise-that-is-strada-della-forra-in-upcoming-ps4-racer-ride-3

  9. http://www.narakathegame.com/

  10. http://www.rockstargames.com/GTAOnline

  11. https://loomai.com

  12. https://pinscreen.com

  13. https://h.163.com

  14. https://ro.my.games/

  15. https://www.youtube.com/watch?v=5R8xZb6J3r0

  16. https://beta.character.ai/

  17. https://en.wikipedia.org/wiki/FIFA_(video_game_series)

  18. https://en.wikipedia.org/wiki/NBA_2K

  19. https://en.wikipedia.org/wiki/Elden_Ring

  20. https://en.wikipedia.org/wiki/God_of_War_(franchise)

  21. https://en.wikipedia.org/wiki/Grand_Theft_Auto_V

  22. https://en.wikipedia.org/wiki/PUBG:_Battlegrounds

  23. https://en.wikipedia.org/wiki/Minecraft

  24. https://en.wikipedia.org/wiki/Honor_of_Kings

  25. https://help.steampowered.com/en/faqs/view/571A-97DA-70E9-FF74

References

  1. Adiwardana D, Luong MT, So DR et al (2020) Towards a human-like open-domain chatbot. arXiv preprint arXiv:2001.09977

  2. Ariyurek S, Betin-Can A, Surer E (2019) Automated video game testing using synthetic and humanlike agents. IEEE Trans Games 13(1):50–67

    Google Scholar 

  3. Balduzzi D, Garnelo M, Bachrach Y et al (2019) Open-ended learning in symmetric zero-sum games. In: International conference on machine learning, pp 434–443

  4. Bao S, He H, Wang F, et al (2021) Plato-xl: Exploring the large-scale pre-training of dialogue generation. arXiv preprint arXiv:2109.09519

  5. Bergdahl J, Gordillo C, Tollmar K et al (2020) Augmenting automated game testing with deep reinforcement learning. In: IEEE conference on games, pp 600–603

  6. Berner C, Brockman G, Chan B, et al (2019) Dota 2 with large scale deep reinforcement learning. CoRR arXiv:1912.06680

  7. Blanz V, Vetter T (1999) A morphable model for the synthesis of 3d faces. In: 26th Annual conference on computer graphics and interactive techniques, pp 187–194

  8. Booth J, Roussos A, Ponniah A et al (2018) Large scale 3d morphable models. Int J Comput Vis 126(2–4):233–254

    MathSciNet  Google Scholar 

  9. Bradley RA, Terry ME (1952) Rank analysis of incomplete block designs: I. the method of paired comparisons. Biometrika 39(3/4):324–345

  10. Brown K, Hamilton A (2016) Photogrammetry and star wars battlefront. In: GDC 2016: Game developer conference, San Francisco: UBM Tech

  11. Brown N, Sandholm T (2018) Superhuman AI for heads-up no-limit poker: Libratus beats top professionals. Science 359(6374):418–424

    MathSciNet  Google Scholar 

  12. Brown N, Sandholm T (2019) Superhuman AI for multiplayer poker. Science 365(6456):885–890

    MathSciNet  Google Scholar 

  13. Brown T, Mann B, Ryder N et al (2020) Language models are few-shot learners. Advances in neural information processing systems 33:1877–1901

    Google Scholar 

  14. Browne CB, Powley E, Whitehouse D et al (2012) A survey of monte carlo tree search methods. IEEE Trans Comput Intell AI Games 4(1):1–43

    Google Scholar 

  15. Cao C, Weng Y, Zhou S et al (2013) Facewarehouse: A 3d facial expression database for visual computing. IEEE Trans Visual Comput Graph 20(3):413–425

    Google Scholar 

  16. Chen H, Liu X, Yin D et al (2017) A survey on dialogue systems: Recent advances and new frontiers. Acm Sigkdd Explorations Newsletter 19(2):25–35

    Google Scholar 

  17. Chen K, Wang Y, Zhang SH et al (2021) Mocap-solver: A neural solver for optical motion capture data. ACM Trans Graph (TOG) 40(4):1–11

    Google Scholar 

  18. Chen KT, Liao A, Pao HKK, et al (2008) Game bot detection based on avatar trajectory. In: International conference on entertainment computing, Springer, pp 94–105

  19. Chen Z, Yi D (2017) The game imitation: Deep supervised convolutional networks for quick video game AI. CoRR arXiv:1702.05663

  20. Chen Z, Xue S, Kolen J et al (2017) Eomm: An engagement optimized matchmaking framework. In: International conference on world wide web, pp 1143–1150

  21. Chenghao L, Wang T, Wu C et al (2021) Celebrating diversity in shared multi-agent reinforcement learning. Ad Neural Inf Process Sys 34

  22. Christiano PF, Leike J, Brown T, et al (2017) Deep reinforcement learning from human preferences. Ad Neural Inf Process Sys 30

  23. Cideron G, Pierrot T, Perrin N, et al (2020) Qd-rl: Efficient mixing of quality and diversity in reinforcement learning. CoRR arXiv:2006.08505

  24. Cohen MM, Massaro DW (1993) Modeling coarticulation in synthetic visual speech. In: Models and techniques in computer animation. Springer, pp 139–156

  25. Creswell A, White T, Dumoulin V et al (2018) Generative adversarial networks: An overview. IEEE Signal Proc Mag 35(1):53– 65

  26. Cudeiro D, Bolkart T, Laidlaw C et al (2019) Capture, learning, and synthesis of 3d speaking styles. In: IEEE/CVF conference on computer vision and pattern recognition, pp 10,101–10,111

  27. Cully A, Demiris Y (2017) Quality and diversity optimization: A unifying modular framework. IEEE Trans Evol Comput 22(2):245–259

    Google Scholar 

  28. Dabral R, Mughal MH, Golyanik V, et al (2023) Mofusion: A framework for denoising-diffusion-based motion synthesis. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 9760–9770

  29. De Kegel B, Haahr M (2019) Procedural puzzle generation: A survey. IEEE Trans Games 12(1):21–40

    Google Scholar 

  30. Deng Q, Li H, Wang K, et al (2021) Globally optimized matchmaking in online games. In: ACM SIGKDD conference on knowledge discovery; Data mining, pp 2753–2763

  31. Deng Y, Yang J, Xu S, et al (2019) Accurate 3d face reconstruction with weakly-supervised learning: From single image to image set. In: IEEE computer vision and pattern recognition workshops

  32. Ding Y (2021) Full-body animation generation for expressive npcs. In: Game developers conference (GDC)

  33. Dossa RFJ, Lian X, Nomoto H et al (2019) A human-like agent based on a hybrid of reinforcement and imitation learning. In: Proceedings of the 2019 international joint conference on neural networks (IJCNN’19), pp 1–8

  34. Dyulicheva YY, Glazieva AO (2022) Game based learning with artificial intelligence and immersive technologies: an overview. In: Ceur workshop proceedings, pp 146–159

  35. Edwards P, Landreth C, Fiume E et al (2016) Jali: an animator-centric viseme model for expressive lip synchronization. ACM Trans Graph (TOG) 35(4):1–11

    Google Scholar 

  36. Ekman P, Rosenberg E, Editors (1997) What the face reveals: Basic and applied studies of spontaneous expression using the facial action coding system (facs)

  37. Eysenbach B, Gupta A, Ibarz J et al (2018) Diversity is all you need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070

  38. Fan Y, Lin Z, Saito J et al (2022) Faceformer: Speech-driven 3d facial animation with transformers. In: IEEE/CVF conference on computer vision and pattern recognition, pp 18,770–18,780

  39. Galway L, Charles D, Black M (2008) Machine learning in digital games: a survey. Artif Intell Rev 29:123–161

    Google Scholar 

  40. Gao Y, Shi B, Du X et al (2021) Learning diverse policies in moba games via macro-goals. In: Ranzato M, Beygelzimer A, Dauphin Y, et al (eds) Advances in Neural Information Processing Systems, pp 16,171–16,182

  41. Gong L, Feng X, Ye D et al (2020) Optmatch: Optimized matchmaking via modeling the high-order interactions on the arena. In: ACM SIGKDD International conference on knowledge discovery & data mining, pp 2300–2310

  42. Goodfellow I, Pouget-Abadie J, Mirza M et al (2020) Generative adversarial networks. Commun ACM 63(11):139–144

    MathSciNet  Google Scholar 

  43. Gorman B, Humphrys M (2007) Imitative learning of combat behaviours in first-person computer games. Proceedings of CGAMES pp 85–90

  44. Gu X, Fan Z, Zhu S, et al (2020) Cascade cost volume for high-resolution multi-view stereo and stereo matching. In: IEEE/CVF Conference on computer vision and pattern recognition, pp 2495–2504

  45. Hannun A, Case C, Casper J et al (2014) Deep speech: Scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567

  46. Harmer J, Gisslén L, del Val J et al (2018) Imitation learning with concurrent actions in 3d games. In: IEEE Conference on computational intelligence and games. IEEE, pp 1–8

  47. Herbrich R, Minka T, Graepel T (2007) Trueskill™: a bayesian skill rating system. In: Advances in neural information processing systems, pp 569–576

  48. Hingston P (2009) The 2k botprize. In: Lanzi PL (ed) IEEE Symposium on Computational Intelligence and Games

  49. Ho J, Jain A, Abbeel P (2020) Denoising diffusion probabilistic models. Ad Neural Inf Process Sys 33:6840–6851

    Google Scholar 

  50. Ho J, Jain A, Abbeel P (2020) Denoising diffusion probabilistic models. Ad Neural Inf Process Sys 33:6840–6851

    Google Scholar 

  51. Holden D (2018) Robust solving of optical motion capture data by denoising. ACM Trans Graph (TOG) 37(4):1–12

    Google Scholar 

  52. Holden D (2019) A new era of performance capture with machine learning. In: Game developers conference (GDC)

  53. Hong ZW, Shann TY, Su SY, et al (2018) Diversity-driven exploration strategy for deep reinforcement learning. Ad Neural Inf Process Sys 31

  54. Hooshyar D, Yousefi M, Lim H (2018) Data-driven approaches to game player modeling: a systematic literature review. ACM Comput Surv (CSUR) 50(6):1–19

    Google Scholar 

  55. Hu EJ, Wallis P, Allen-Zhu Z et al (2021) Lora: Low-rank adaptation of large language models. In: International conference on learning representations

  56. Huang TK, Lin CJ, Weng R (2004) A generalized bradley-terry model: From group competition to individual skill. Ad Neural Inf Process Sys 17:601–608

    Google Scholar 

  57. Hussein A, Gaber MM, Elyan E et al (2017) Imitation learning: A survey of learning methods. ACM Comput Surv (CSUR) 50(2):1–35

    Google Scholar 

  58. Jensen R, Dahl A, Vogiatzis G et al (2014) Large scale multi-view stereopsis evaluation. In: IEEE conference on computer vision and pattern recognition, pp 406–413

  59. Ji Z, Lu Z, Li H (2014) An information retrieval approach to short text conversation. arXiv preprint arXiv:1408.6988

  60. Justesen N, Bontrager P, Togelius J et al (2019) Deep learning for video game playing. IEEE Trans Games 12(1):1–20

    Google Scholar 

  61. Kang AR, Jeong SH, Mohaisen A et al (2016) Multimodal game bot detection using user behavioral characteristics. SpringerPlus 5(1):1–19

    Google Scholar 

  62. Karras T, Aila T, Laine S et al (2017) Audio-driven facial animation by joint end-to-end learning of pose and emotion. ACM Trans Graph (TOG) 36(4):1–12

    Google Scholar 

  63. Kazhdan M, Hoppe H (2013) Screened poisson surface reconstruction. ACM Trans Graph (ToG) 32(3):1–13

    Google Scholar 

  64. van Kesteren M, Langevoort J, Grootjen F (2009) A step in the right direction: Botdetection in mmorpgs using movement analysis. In: Proc. of the 21st Belgian-Dutch Conference on Artificial Intelligence (BNAIC 2009), pp 129–136

  65. Knapitsch A, Park J, Zhou QY et al (2017) Tanks and temples: Benchmarking large-scale scene reconstruction. ACM Trans Graph (ToG) 36(4):1–13

    Google Scholar 

  66. Kotkov D, Pandey G, Semenov A (2018) Gaming bot detection: a systematic literature review. In: International conference on computational social networks, Springer, pp 247–258

  67. Kwon H, Mohaisen A, Woo J et al (2016) Crime scene reconstruction: Online gold farming network analysis. IEEE Trans Inf Forensics Security 12(3):544–556

    Google Scholar 

  68. Lattas A, Moschoglou S, Gecer B et al (2020) Avatarme: Realistically renderable 3d facial reconstruction. In: IEEE/CVF Conference on computer vision and pattern recognition, pp 760–769

  69. Lee E, Woo J, Kim H et al (2016) You are a game bot!: Uncovering game bots in mmorpgs via self-similarity in the wild. In: Ndss

  70. Lee J, Marsella S (2006) Nonverbal behavior generator for embodied conversational agents. In: International conference on intelligent virtual agents, pp 243–255

  71. Lehman J, Stanley KO (2011) Evolving a diversity of virtual creatures through novelty search and local competition. In: Annual conference on genetic and evolutionary computation, pp 211–218

  72. Lewis JP, Anjyo K, Rhee T et al (2014) Practice and theory of blendshape facial models. Eurographics (State of the Art Reports) 1(8):2

    Google Scholar 

  73. Li J, Koyamada S, Ye Q et al (2020) Suphx: Mastering mahjong with deep reinforcement learning. CoRR arXiv:2003.13590

  74. Li L, Wang S, Zhang Z et al (2021) Write-a-speaker: Text-based emotional and rhythmic talking-head generation. In: Proceedings of the AAAI conference on artificial intelligence, pp 1911– 1920

  75. Li W, Chu X, Su Y et al (2022) Fingformer: Contrastive graph-based finger operation transformer for unsupervised mobile game bot detection. In: ACM web conference, pp 3367–3375

  76. Li X, Wu Z, Meng HM et al (2016) Expressive speech driven talking avatar synthesis with dblstm using limited amount of emotional bimodal data. In: Interspeech, pp 1477–1481

  77. Lin J, Yuan Y, Shao T et al (2020) Towards high-fidelity 3d face reconstruction from in-the-wild images using graph convolutional networks. In: IEEE/CVF conference on computer vision and pattern recognition, pp 5891–5900

  78. Lin J, Yuan Y, Zou Z (2021) Meingame: Create a game character face from a single portrait. In: Proceedings of the AAAI conference on artificial intelligence, pp 311–319

  79. Lin J, Li L, Yuan Y et al (2022) Realistic game avatars auto-creation from single images via three-pathway network. In: 2022 IEEE Conference on Games (CoG), IEEE, pp 33–40

  80. Lin J, Chang J, Liu L et al (2023) Being comes from not-being: Open-vocabulary text-to-motion generation with wordless training. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 23,222–23,231

  81. Lin Z, Lin J, Li L et al (2022) High-quality 3d face reconstruction with affine convolutional networks. In: ACM international conference on multimedia

  82. Liu X, Jia H, Wen Y et al (2021) Towards unifying behavioral and response diversity for open-ended learning in zero-sum games. Ad Neural Inf Process Sys 34:941–952

    Google Scholar 

  83. Loiudice A (2018) How milestone created the breathtaking biker’s paradise that is strada della forra in upcoming ps4 racer ride 3. PlayStation Blog

  84. Loiudice A (2019) A plague tale: Innocence overrun with megascans. Quixel https://quixel.com/blog/2019/5/7/a-plague-tale-innocence-overrun-with-megascans

  85. McDonald J (2018) Robocalypse now: Using deep learning to combat cheating in ’counter-strike: Global offensive’. In: Game Developers Conference (GDC)

  86. Mescheder L, Oechsle M, Niemeyer M et al (2019) Occupancy networks: Learning 3d reconstruction in function space. In: IEEE/CVF conference on computer vision and pattern recognition, pp 4460–4470

  87. Miikkulainen R, Bryant BD, Cornelius R et al (2006) Computational intelligence in games. Principles and practice, Computational intelligence, pp 155–191

    Google Scholar 

  88. Milani S, Kanervisto A, Ramanauskas K et al (2023) Towards solving fuzzy tasks with human feedback: A retrospective of the minerl basalt 2022 competition. arXiv preprint arXiv:2303.13512

  89. Mildenhall B, Srinivasan PP, Tancik M et al (2020) Nerf: Representing scenes as neural radiance fields for view synthesis. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I, pp 405–421

  90. Minka T, Cleven R, Zaykov Y (2018) Trueskill 2: An improved bayesian skill rating system. Tech Rep

  91. Mou C, Wang X, Xie L et al (2023) T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion models. arXiv preprint arXiv:2302.08453

  92. Mouret JB, Clune J (2015) Illuminating search spaces by mapping elites. CoRR arXiv:1504.04909

  93. Muñoz-Avila H, Bauckhage C, Bida M et al (2013) Learning and game ai. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik

  94. Noh Y, Jeong S, Kim HK (2021) Trading behind-the-scene: Analysis of online gold farming network in the auction house system. IEEE Trans Games 14(3):423–434

    Google Scholar 

  95. Oh J, Borbora ZH, Sharma D, et al (2013) Bot detection based on social interactions in mmorpgs. In: IEEE international conference on social computing, pp 536–543

  96. Pao HK, Chen KT, Chang HC (2010) Game bot detection via avatar trajectory analysis. IEEE Trans Comput Intell AI Games 2(3):162–175

    MathSciNet  Google Scholar 

  97. Park JJ, Florence P, Straub J et al (2019) Deepsdf: Learning continuous signed distance functions for shape representation. In: IEEE/CVF conference on computer vision and pattern recognition, pp 165–174

  98. Park JS, O’Brien JC, Cai CJ et al (2023) Generative agents: Interactive simulacra of human behavior. arXiv preprint arXiv:2304.03442

  99. Parker-Holder J, Pacchiano A, Choromanski K et al (2020) Effective diversity in population-based reinforcement learning. CoRR arXiv:2002.00632

  100. Pelling C, Gardner H (2019) Two human-like imitation-learning bots with probabilistic behaviors. In: Proceedings of the 2019 IEEE conference on games (CoG’19), pp 1–7

  101. Perez-Nieves N, Yang Y, Slumbers O et al (2021) Modelling behavioural diversity for learning in open-ended games. In: International conference on machine learning, PMLR, pp 8514–8524

  102. Perolat J, De Vylder B, Hennes D et al (2022) Mastering the game of stratego with model-free multiagent reinforcement learning. Science 378(6623):990–996

    MathSciNet  Google Scholar 

  103. Pham HX, Cheung S, Pavlovic V (2017) Speech-driven 3d facial animation with implicit emotional awareness: a deep learning approach. In: IEEE conference on computer vision and pattern recognition workshops, pp 80–88

  104. Poznanski (2014) Visual revolution of the vanishing of ethan carter. The Astronauts https://www.theastronauts.com/2014/03/visual-revolution-vanishing-ethan-carter

  105. Qi X, Pu J, Zhao S et al (2022) A gnn-enhanced game bot detection model for mmorpgs. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer, pp 316–327

  106. Raab S, Leibovitch I, Li P et al (2023) Modi: Unconditional motion synthesis from diverse data. In: IEEE/CVF conference on computer vision and pattern recognition, pp 13,873–13,883

  107. Radford A, Kim JW, Hallacy C et al (2021) Learning transferable visual models from natural language supervision. In: International conference on machine learning, PMLR, pp 8748–8763

  108. Ramesh A, Dhariwal P, Nichol A et al (2022) Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125

  109. Richard A, Zollhöfer M, Wen Y et al (2021) Meshtalk: 3d face animation from speech using cross-modality disentanglement. In: IEEE/CVF International conference on computer vision, pp 1173–1182

  110. Risi S, Preuss M (2020) From chess and atari to starcraft and beyond: How game ai is driving the world of ai. KI-Künstliche Intelligenz 34:7–17

    Google Scholar 

  111. Rombach R, Blattmann A, Lorenz D et al (2022) High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10,684–10,695

  112. Ruiz N, Li Y, Jampani V et al (2022) Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. arXiv preprint arXiv:2208.12242

  113. Rusu AA, Colmenarejo SG, Gulcehre C et al (2015) Policy distillation. CoRR abs/1511.06295 arXiv:1511.06295

  114. Sadoughi N, Busso C (2018) Expressive speech-driven lip movements with multitask learning. In: IEEE International conference on automatic face & gesture recognition, pp 409–415

  115. Sadoughi N, Busso C (2019) Speech-driven expressive talking lips with conditional sequential generative adversarial networks. IEEE Transactions on Affective Computing 12(4):1031–1044

    Google Scholar 

  116. Schönberger JL, Zheng E, Frahm JM et al (2016) Pixelwise view selection for unstructured multi-view stereo. In: European conference on computer vision, Springer, pp 501–518

  117. Sherstinsky A (2020) Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network. Physica D: Nonlinear Phenomena 404(132):306

    MathSciNet  Google Scholar 

  118. Shi T, Yuan Y, Fan C et al (2019) Face-to-parameter translation for game character auto-creation. In: IEEE/CVF International conference on computer vision, pp 161–170

  119. Shi T, Zou Z, Shi Z et al (2020) Neural rendering for game character auto-creation. IEEE Trans Patt Anal Mach Intell 44(3):1489–1502

    Google Scholar 

  120. Shi T, Zou Z, Song X et al (2020) Neutral face game character auto-creation via pokerface-gan. In: ACM International conference on multimedia, pp 3201–3209

  121. Shi T, Zuo Z, Yuan Y et al (2020) Fast and robust face-to-parameter translation for game character auto-creation. In: AAAI Conference on artificial intelligence, pp 1733–1740

  122. Shuster K, Xu J, Komeili M et al (2022) Blenderbot 3: a deployed conversational agent that continually learns to responsibly engage. arXiv preprint arXiv:2208.03188

  123. Silver D, Huang A, Maddison CJ et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489

    Google Scholar 

  124. Silver D, Hubert T, Schrittwieser J et al (2017) Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815

  125. Song Y, Wang J, Lukasiewicz T et al (2018) Diversity-driven extensible hierarchical reinforcement learning. CoRR arXiv:1811.04324

  126. Starke S, Zhao Y, Komura T et al (2020) Local motion phases for learning multi-contact character movements. ACM Trans Graph (TOG) 39(4):54–1

    Google Scholar 

  127. Statham N, Jacob J, Fridenfalk M (2020) Photogrammetry for game environments 2014-2019: What happened since the vanishing of ethan carter. In: DIGRA 2020, Tampere, Finland, June 2–6, 2020

  128. Su Y, Yao D, Chu X et al (2022) Few-shot learning for trajectory-based mobile game cheating detection. In: ACM SIGKDD Conference on knowledge discovery and data mining, pp 3941–3949

  129. Sutton RS, Barto AG (2018) Reinforcement learning: An introduction. MIT press

  130. Takahashi T, Tanaka K, Oka N (2018) Adaptive mixed-initiative dialog motivates a game player to talk with an npc. In: International conference on human-agent interaction, pp 153–160

  131. Tao J, Xu J, Gong L et al (2018) Nguard: A game bot detection framework for netease mmorpgs. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp 811–820

  132. Tao J, Lin J, Zhang S et al (2019) Mvan: Multi-view attention networks for real money trading detection in online games. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2536–2546

  133. Tao J, Xiong Y, Zhao S et al (2020) Xai-driven explainable multi-view game cheating detection. In: 2020 IEEE Conference on Games (CoG), IEEE, pp 144–151

  134. Tao J, Xiong Y, Zhao S et al (2023) Explainable ai for cheating detection and churn prediction in online games. IEEE Trans Games 15(2):242–251

    Google Scholar 

  135. Taylor S, Kim T, Yue Y et al (2017) A deep learning approach for generalized speech animation. ACM Trans Graph (TOG) 36(4):1–11

    Google Scholar 

  136. Thawonmas R, Kashifuji Y, Chen KT (2008) Detection of mmorpg bots based on behavior analysis. In: Proceedings of the 2008 international conference on advances in computer entertainment technology, pp 91–94

  137. Thoppilan R, De Freitas D, Hall J et al (2022) Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239

  138. Thurstone LL (1927) A law of comparative judgment. Psychol Rev 34(4):273

    Google Scholar 

  139. Touvron H, Lavril T, Izacard G et al (2023) Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971

  140. Vaswani A, Shazeer N, Parmar N et al (2017) Attention is all you need. Ad Neural Inf Process Sys 30

  141. Vicini D, Speierer S, Jakob W (2022) Differentiable signed distance function rendering. ACM Trans Graph (TOG) 41(4):1–18

    Google Scholar 

  142. Vinyals O, Le Q (2015) A neural conversational model. arXiv preprint arXiv:1506.05869

  143. Vinyals O, Babuschkin I, Czarnecki WM et al (2019) Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature 575(7782):350–354

    Google Scholar 

  144. Von Neumann J, Morgenstern O (2007) Theory of games and economic behavior. In: Theory of games and economic behavior. Princeton university press

  145. Wang G, Xie Y, Jiang Y et al (2023) Voyager: An open-ended embodied agent with large language models. arXiv preprint arXiv:2305.16291

  146. Wang K, Li H, Gong L et al (2020) Match tracing: A unified framework for real-time win prediction and quantifiable performance evaluation. In: Proceedings of the 29th ACM International conference on information & knowledge management, pp 2781–2788

  147. Wang L, Hu K, Bai L et al (2023) Multi-scale control signal-aware transformer for motion synthesis without phase. arXiv preprint arXiv:2303.01685

  148. Wang X, Song J, Qi P et al (2021) SCC: an efficient deep reinforcement learning agent mastering the game of starcraft II. In: the 38th International conference on machine learning, pp 10,905–10,915

  149. Wang Y, Xue K, Qian C (2022) Evolutionary diversity optimization with clustering-based selection for reinforcement learning. In: Proceedings of the 10th international conference on learning representations (ICLR 2022). OpenReview.net

  150. Ward I (2019) Call of duty: Modern warfare. PC, PS4, Xbox One

  151. Whitley D (2001) An overview of evolutionary algorithms: practical issues and common pitfalls. Inf Softw Technol 43(14):817–831

    Google Scholar 

  152. Woo J, Kim HK (2012) Survey and research direction on online game security. In: Proceedings of the workshop at SIGGRAPH Asia, pp 19–25

  153. Woo K, Kwon H, Kim Hc et al (2011) What can free money tell us on the virtual black market? In: Proceedings of the ACM SIGCOMM 2011 conference, pp 392–393

  154. Wright M, Vorobeychik Y (2015) Mechanism design for team formation. In: AAAI Conference on artificial intelligence, pp 1050–1056

  155. Wu Y, Chen Y, Xie X et al (2020) Regression testing of massively multiplayer online role-playing games. In: Proceedings of the 2020 IEEE international conference on software maintenance and evolution (ICSE 2020), IEEE, pp 692–696

  156. Wurman PR, Barrett S, Kawamoto K et al (2022) Outracing champion gran turismo drivers with deep reinforcement learning. Nature 602(7896):223–228

    Google Scholar 

  157. Xing J, Xia M, Zhang Y et al (2023) Codetalker: Speech-driven 3d facial animation with discrete motion prior. arXiv preprint arXiv:2301.02379

  158. Xu J, Luo Y, Tao J et al (2020) Nguard+ an attention-based game bot detection framework via player behavior sequences. ACM Trans Knowl Discov Data (TKDD) 14(6):1–24

    Google Scholar 

  159. Yannakakis GN, Togelius J (2018) Artificial intelligence and games. Springer

    Google Scholar 

  160. Yao Y, Luo Z, Li S et al (2018) Mvsnet: Depth inference for unstructured multi-view stereo. In: European conference on computer vision (ECCV), pp 767–783

  161. Yariv L, Kasten Y, Moran D et al (2020) Multiview neural surface reconstruction by disentangling geometry and appearance. Ad Neural Inf Process Sys 33:2492–2502

  162. Yariv L, Gu J, Kasten Y et al (2021) Volume rendering of neural implicit surfaces. Ad Neural Inf Process Sys 34:4805–4815

    Google Scholar 

  163. Yin QY, Yang J, Huang KQ et al (2023) Ai in human-computer gaming: Techniques, challenges and opportunities. Machine intelligence research pp 1–19

  164. Zanetti S, Rhalibi AE (2004) Machine learning techniques for FPS in Q3. In: ACM SIGCHI International conference on advances in computer entertainment technology, pp 239–244

  165. Zhang K, Riegler G, Snavely N et al (2020) Nerf++: Analyzing and improving neural radiance fields. arXiv preprint arXiv:2010.07492

  166. Zhang L, Agrawala M (2023) Adding conditional control to text-to-image diffusion models. arXiv preprint arXiv:2302.05543

  167. Zhang Y, Sun S, Galley M et al (2019) Dialogpt: Large-scale generative pre-training for conversational response generation. arXiv preprint arXiv:1911.00536

  168. Zhao R, Li W, Hu Z et al (2023) Zero-shot text-to-parameter translation for game character auto-creation. arXiv preprint arXiv:2303.01311

  169. Zhao S, Fang J, Zhao S et al (2022) T-detector: A trajectory based pre-trained model for game bot detection in mmorpgs. In: IEEE International conference on data engineering, pp 992–1003

  170. Zheng Y, Xie X, Su T et al (2019) Wuji: Automatic online combat game testing using evolutionary deep reinforcement learning. In: International conference on automated software engineering, IEEE, pp 772–784

  171. Zhou Y, Xu Z, Landreth C et al (2018) Visemenet: Audio-driven animator-centric speech animation. ACM Trans Graph (TOG) 37(4):1–10

    Google Scholar 

  172. Zhou Z, Fu W, Zhang B et al (2022) Continuously discovering novel strategies via reward-switching policy optimization. In: International conference on learning representations. OpenReview.net

Download references

Acknowledgements

We would like to thank Jiajun Bu and Weixun Wang for their generous and helpful discussions, as well as their constructive suggestions.

Funding

This work is supported by the Key Research and Development Program of Zhejiang Province (No. 2022C01011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Ding or Tangjie Lv.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Ding, Y., Wu, R. et al. Deep learning applications in games: a survey from a data perspective. Appl Intell 53, 31129–31164 (2023). https://doi.org/10.1007/s10489-023-05094-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-05094-2

Keywords

Navigation