Skip to main content
Log in

Detection of explosives in dustbins using deep transfer learning based multiclass classifiers

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The concealment of improvised explosive devices in dustbins aimed at destroying people and property is causing the mass removal of dustbins from public places and vehicular public transport in cities around the world. Such action of dustbin removal results in littering, stench, pests, contamination of water bodies, the spread of diseases, and increased greenhouse gases. The current solutions to the problem are blast-resistant dustbins which are bulky and expensive, and transparent dustbins which display the awful appearance of wastes in public places. This article proposes equipping dustbins with artificial intelligence-based classifiers to detect explosives concealed in wastes in public dustbins to minimise the risk to public safety. There was the need to construct a new database of explosive images to augment the existing TrashNet dataset. Then, through transfer learning using eight state-of-the-art convolutional neural networks as base models, the augmented dataset was used to search for optimum convolutional neural networks to detect explosives. One of the trained networks based on DenseNet-121 achieved the Top-1 accuracy of 80% with about 26 minutes learning time, which is 6.7% better than the Top-1 accuracy achieved by the base model on the benchmark ImageNet dataset. This finding demonstrates that the designed neural networks are promising cutting-edge techniques for detecting explosives concealed in dustbins to threaten public safety. To the best of our knowledge, this is the first time that convolutional neural networks have been proposed to identify explosives concealed in dustbins.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Algorithm 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability and Access

The dataset and the Python code used to complete this work are available at the GitHub site https://github.com/jessieAmoakoh/I2Net

References

  1. Kennedy J, Sayedelahl A, Castro JO, Circelli M, Ghasemigoudarzi P, Green D, Henschel M, Ma Y, McGuire P (2023) The detection of concealed explosives using the midsix system. IEEE Trans Radar Syst 1:448–454. https://doi.org/10.1109/TRS.2023.3310860

    Article  Google Scholar 

  2. Gallegos SF, Aviles-Rosa EO, DeChant MT, Hall NJ, Prada-Tiedemann PA (2023) Explosive odor signature profiling: A review of recent advances in technical analysis and detection. Forensic Sci Int 347:111652. https://doi.org/10.1016/j.forsciint.2023.111652

    Article  CAS  PubMed  Google Scholar 

  3. Wikipedia (1978) Sydney Hilton Hotel Bombing. https://en.wikipedia.org/wiki/Sydney_Hilton_Hotel_bombing Accessed 30 Nov 2023

  4. United Press International A bomb hidden in a trash can exploded (1988) https://www.upi.com/Archives/1988/09/21/A-bomb-hidden-in-a-trash-can-exploded-during/8010590817600/ Accessed 29 Nov 2023

  5. Lawrence-Jones C (2019) The Reason Why There Are Hardly Any Bins on the London Underground. https://www.mylondon.news/news/zone-1-news/reason-hardly-any-bins-london-17150026 Accessed 30 Nov 2023

  6. Stuff Ltd (2012) Rubbish Bin Bombs Injure 27. https://www.stuff.co.nz/world/europe/6821270/Rubbish-bin-bombs-injure-27 Accessed 28 Nov 2023

  7. Shen Y, Feng J, Zhou D, He K, Zhu B (2023) Impacts of aboveground litter and belowground roots on soil greenhouse gas emissions: Evidence from a dirt experiment in a pine plantation.Agric For Meteorol 343:109792. https://doi.org/10.1016/j.agrformet.2023.109792

  8. US NUSTL (2022) Blast Resistant Trash Receptacles: Market Survey Report. https://www.dhs.gov/sites/default/files/2022-09/22_0818_st_saver_blast_resistant_trash_receptacles_market_survey_report_0.pdf Accessed 24 Nov 2023

  9. Trajkovski J, Kunc R, Perenda J (2016) Blast resistant trash receptacles with blast loading redirection - comparative analyses. Comp Meth Exp Meas 4(3):201–212

    Google Scholar 

  10. Akay M, Du Y, Sershen CL, Wu M, Chen TY, Assassi S, Mohan C, Akay YM (2021) Deep learning classification of systemic sclerosis skin using the mobilenetv2 model.IEEE Open J Eng Med Biol 2:104–110. https://doi.org/10.1109/OJEMB.2021.3066097

  11. Soori M, Arezoo B, Dastres R (2023) Artificial neural networks in supply chain management, a review. J Econ Technol. https://doi.org/10.1016/j.ject.2023.11.002

    Article  Google Scholar 

  12. Yakoi PS, Meng X, Cui S, Suleman D, Yang X (2023) Analysis of time series data generated from the internet of things using deep learning models. IEEE Access 11:133313–133328. https://doi.org/10.1109/ACCESS.2023.3331762

    Article  Google Scholar 

  13. Mohimont L, Alin F, Krajecki M, Steffenel LA (2021) Convolutional neural networks and temporal cnns for covid-19 forecasting in france. Appl Intell 51:8784–8809. https://doi.org/10.1007/s001090000086

    Article  Google Scholar 

  14. Prasad BR, Hussain MA, Sridharan K, CosioBorda RF, Geetha C (2023) Support vector machine and neural network for enhanced classification algorithm in ecological data. Measurement: Sensors 27:100780. https://doi.org/10.1016/j.measen.2023.100780

  15. Liu X, Li J, Ma J, Sun H, Xu Z, Zhang T, Yu H (2023) Deep transfer learning for intelligent vehicle perception: A survey. Green Energy Intell Trans 2(5):100125. https://doi.org/10.1016/j.geits.2023.100125

    Article  Google Scholar 

  16. Liu X, Yu W, Liang F, Griffith D, Golmie N (2021) Toward deep transfer learning in industrial internet of things. IEEE Internet of Things J 8:12163–12175. https://doi.org/10.1109/JIOT.2021.3062482

    Article  Google Scholar 

  17. Ali W, Imran M, Yaseen MU, Aurangzeb K, Ashraf N, Aslam S (2023) A transfer learning approach for facial paralysis severity detection. IEEE Access 127492–127508. https://doi.org/10.1109/ACCESS.2023.3330242

  18. Chen Y, Xiao H, Teng X, Liu W, Lan L (2024) Enhancing accuracy of physically informed neural networks for nonlinear schrodinger equations through multi-view transfer learning. Information Fusion 102:102041. https://doi.org/10.1016/j.inffus.2023.102041

    Article  Google Scholar 

  19. Islam MM, Barua P, Rahman M, Ahammed T, Akter L, Uddin J (2023) Transfer learning architectures with fine-tuning for brain tumor classification using magnetic resonance imaging. Healthcare Analytics 4:100270. https://doi.org/10.1016/j.health.2023.100270

    Article  Google Scholar 

  20. Pang B, Nijkamp E, Wu YN (2020) Deep learning with tensorflow: A review. Educ Behav Stat 45:227–248. https://doi.org/10.3102/1076998619872761

    Article  Google Scholar 

  21. Akgun D (2022) Tensorflow based deep learning layer for local derivative patterns. Software Impacts 14:100452. https://doi.org/10.1016/j.simpa.2022.100452

    Article  Google Scholar 

  22. Keras (2022) Keras Applications. https://keras.io/api/applications Accessed 26 Nov 2023

  23. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: The 3rd International Conference on Learning Representations (ICLR2015, (ed) Ranzato MA, vol 1. ICLR, San Diego, pp 630–645

  24. Huang G, Liu Z, Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Rehg J, Liu Y, Wu Y, Taylor C (eds) Proc IEEE Conf Comput Vision Pattern Recogn (CVPR), vol 1. The IEEE. Honolulu, HI, USA, pp 2261–2269

    Google Scholar 

  25. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2018) Mobilenetv 2: Inverted residuals and linear bottlenecks. In: Forsyth D, Laptev I, Ramanan D, Oliva A (eds) Proc IEEE Conf Comput Vision Pattern Recogn (CVPR), vol 1. The IEEE. Salt Lake City, UT, USA, pp 4510–4520

    Google Scholar 

  26. Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transferable architectures for scalable image recognition. In: Forsyth D, Laptev I, Ramanan D, Oliva A (eds) 2018 IEEE/CVF Conf Comput Vision Pattern Recogn (CVPR), vol 1. IEEE Computer Society. Los Alamitos, CA, USA, pp 8697–8710

    Google Scholar 

  27. Tan M, Le QV (2021) Efficientnetv2: Smaller models and faster training. In: Meila M, Zhang T (eds) Proc Int Conf Mach Learn, 18–24 July 2021, vol 38. ICML, Virtual Event, pp 10096–10106

    Google Scholar 

  28. Shabrina NH, Lika RA, Indarti S (2023) Deep learning models for automatic identification of plant-parasitic nematode. Artif Intell Agric 7:1–12. https://doi.org/10.1016/j.aiia.2022.12.002

    Article  Google Scholar 

  29. Liu Z, Mao H, Wu C-Y, Feichtenhofer C, Darrell T, Xie S (2022) A convnet for the 2020s. In: Kristin Dana ea (ed) IEEE/CVF Conf Comput Vision Pattern Recogn (CVPR), 19-23 June, New Orleans, Louisiana, vol 1, pp 11966–11976 The IEEE, ???

  30. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Communications of the ACM 60(6):84–90

    Article  Google Scholar 

  31. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L (2022) Imagenet large scale visual recognition challenge. Int J Comput Vision 115:211–252

    Article  MathSciNet  Google Scholar 

  32. Gyasi-Agyei A (2023) I2Net: Database of IED Images for IED Detection in Public Waste Receptacles. https://github.com/jessieAmoakoh/I2Net

  33. Dhillon A, Verma GK (2020) Convolutional neural network: a review of models, methodologies and applications to object detection. Prog Artif Intell 9(2):85–112. https://doi.org/10.1007/s13748-019-00203-0

    Article  Google Scholar 

  34. Wu X, Feng Y, Xu H, Lin Z, Chen T, Li S, Qiu S, Liu Q, Ma Y, Zhang S (2023) Ctranscnn: Combining transformer and cnn in multilabel medical image classification. Knowledge-Based Systems 281:111030. https://doi.org/10.1016/j.knosys.2023.111030

    Article  Google Scholar 

  35. Hossain S, Azam S, Montaha S, Karim A, Chowa SS, Mondol C, Zahid Hasan M, Jonkman M (2023) Automated breast tumor ultrasound image segmentation with hybrid unet and classification using fine-tuned cnn model. Heliyon 9(11):21369. https://doi.org/10.1016/j.heliyon.2023.e21369

    Article  Google Scholar 

  36. Bi H, Deng J, Yang T, Wang J, Wang L (2021) Cnn-based target detection and classification when sparse sar image dataset is available. IEEE J Sel Top Appl Earth Obs Remote Sens 14:6815–6826. https://doi.org/10.1109/JSTARS.2021.3093645

    Article  ADS  Google Scholar 

  37. Cai Y, Li Y, Qiu C, Ma J, Gao X (2019) Medical image retrieval based on convolutional neural network and supervised hashing. IEEE Access 7:51877–51885. https://doi.org/10.1109/ACCESS.2019.2911630

    Article  Google Scholar 

  38. Hema C, Marquez FPG (2023) Emotional speech recognition using cnn and deep learning techniques. Appl Acoust 211:109492. https://doi.org/10.1016/j.apacoust.2023.109492

    Article  Google Scholar 

  39. Kopuklu O, Hormann S, Herzog F, Cevikalp H, Rigoll G (2022) Dissected 3d cnns: Temporal skip connections for efficient online video processing. Comput Vision Image Underst 215:103318. https://doi.org/10.1016/j.cviu.2021.103318

    Article  Google Scholar 

  40. Wang H, Li Y, Khan SA, Luo Y (2020) Prediction of breast cancer distant recurrence using natural language processing and knowledge-guided convolutional neural network. Arti Intell Med 110:101977. https://doi.org/10.1016/j.artmed.2020.101977

    Article  Google Scholar 

  41. Bao L, Zhou X, Zheng B, Yin H, Zhu Z, Zhang J, Yan C (2023) Aggregating transformers and cnns for salient object detection in optical remote sensing images. Neurocomput 553:126560. https://doi.org/10.1016/j.neucom.2023.126560

    Article  Google Scholar 

  42. Fernández-Alonso D, Fernández-Lozano J, García-Ordás MT (2023) Convolutional neural networks for accurate identification of mining remains from uav-derived images. Applied Intell 1573–7497. https://doi.org/10.1007/s10489-023-05161-8

  43. Wu Y, Wei J, Pan J, Chen P (2019) Research on microseismic source locations based on deep reinforcement learning. IEEE Access 7:39962–39973. https://doi.org/10.1109/ACCESS.2019.2906066

    Article  Google Scholar 

  44. Saidi F, Trabelsi Z (2022) A hybrid deep learning-based framework for future terrorist activities modeling and prediction. Egyptian Inform J 23(3):437–446. https://doi.org/10.1016/j.eij.2022.04.001

    Article  Google Scholar 

  45. Madichetty S, Sridevi M (2021) A neural-based approach for detecting the situational information from twitter during disaster. IEEE Trans Comput Soc Syst 8(4):870–880. https://doi.org/10.1109/TCSS.2021.3064299

    Article  Google Scholar 

  46. Chen C-Y, Yu T-T (2023) Towards a circular economy: Recapturing battery, metal, and plastic from soil-size and gravel-size municipal solid waste incineration bottom ash using convolutional neural networks. J Clean Prod 432:139737. https://doi.org/10.1016/j.jclepro.2023.139737

    Article  Google Scholar 

  47. Fan M, Zuo K, Wang J, Zhu J (2023) A lightweight multiscale convolutional neural network for garbage sorting. Syst Soft Comput 5:200059. https://doi.org/10.1016/j.sasc.2023.200059

    Article  Google Scholar 

  48. Villalba-Diez J, Schmidt D, Gevers R, Ordieres-Meré J, Buchwitz M, Wellbrock W (2019) Deep learning for industrial computer vision quality control in the printing industry 4.0. Sensors 19(18). https://doi.org/10.3390/s19183987

  49. Singh N, Ajaykumar K, Dhruw LK, Choudhury BU (2023) Optimization of irrigation timing for sprinkler irrigation system using convolutional neural network-based mobile application for sustainable agriculture. Smart Agric Technol 5:100305. https://doi.org/10.1016/j.atech.2023.100305

    Article  Google Scholar 

  50. Wu D, Ying Y, Zhou M, Pan J, Cui D (2023) Improved resnet-50 deep learning algorithm for identifying chicken gender. Comput Electron Agric 205:107622. https://doi.org/10.1016/j.compag.2023.107622

    Article  Google Scholar 

  51. Xiao F, Liu H, Lu J (2024) A new approach based on a 1d + 2d convolutional neural network and evolving fuzzy system for the diagnosis of cardiovascular disease from heart sound signals. Appl Acoust 216:109723. https://doi.org/10.1016/j.apacoust.2023.109723

    Article  Google Scholar 

  52. Khan MT (2024) A modified convolutional neural network with rectangular filters for frequency-hopping spread spectrum signals. Appl Soft Comput 150:111036. https://doi.org/10.1016/j.asoc.2023.111036

    Article  Google Scholar 

  53. Chen W, Li M (2023) Standardized motion detection and real time heart rate monitoring of aerobics training based on convolution neural network. Prev Med 174:107642. https://doi.org/10.1016/j.ypmed.2023.107642

    Article  PubMed  Google Scholar 

  54. Zhao J (2021) Efficiency of corporate debt financing based on machine learning and convolutional neural network. Microproc Microsyst 83:103998. https://doi.org/10.1016/j.micpro.2021.103998

    Article  Google Scholar 

  55. Yang M, Thung G (2016) TrashNet Trash Dataset. https://github.com/garythung/trashnet Accessed 27 Nov 2022

  56. Bobulski J, Piatkowski J (2018) Pet waste classification method and plastic waste database - wadaba. In: Choraś M, Choraś RS (eds) Image Processing and Communications Challenges 9. Springer, Cham, pp 57–64

    Chapter  Google Scholar 

  57. Kumsetty N, Nekkare A (2022) TrashBox. IEEE Dataport. https://dx.doi.org/10.21227/csg6-h017 Accessed 27 Nov 2023

  58. Fulton MS, Hong J, Sattar J (2020) Trash-ICRA19: A Bounding Box Labeled Dataset of Underwater Trash. Data Repository for U of M. https://conservancy.umn.edu/handle/11299/214366 Accessed 27 Nov 2023

  59. Tata G (2021) DeepPlastic: An Open Source Image Dataset for Epipelagic Marine Plastic Detection. https://zenodo.org/records/5562940 Accessed 27 Nov 2023

  60. Proença, P., Simões, P (2020) ACO: Trash Annotations in Context for Litter Detection. http://tacodataset.org Accessed 27 Nov 2023

  61. Bashkirova D, Abdelfattah M, Zhu Z, Akl J, Alladkani F, Hu P, Ablavsky V, Calli B, Bargal SA, Saenko K (2022) Zerowaste dataset: Towards deformable object segmentation in cluttered scenes. In: Kristin Dana ea (ed) 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 21115–21125. https://doi.org/10.1109/CVPR52688.2022.02047

  62. Wu T-W, Zhang H, Peng W, Lü F, He P-J (2023) Applications of convolutional neural networks for intelligent waste identification and recycling: A review. Resources, Conservation and Recycling 190:106813. https://doi.org/10.1016/j.resconrec.2022.106813

    Article  Google Scholar 

  63. Mao W-L, Chen W-C, Wang C-T, Lin Y-H (2021) Recycling waste classification using optimized convolutional neural network. Resour Conserv Recycl 164:105132. https://doi.org/10.1016/j.resconrec.2020.105132

    Article  Google Scholar 

  64. Wu Z, Li H, Wang X, Wu Z, Zou L, Xu L, Tan M (2022) New benchmark for household garbage image recognition. Tsinghua Sci Technol 27(5):793–803. https://doi.org/10.26599/TST.2021.9010072

  65. Gazit I, Goldblatt A, Grinstein D, Terkel J (2021) Dogs can detect the individual odors in a mixture of explosives. Appl Anim Behav Sci 235:105212. https://doi.org/10.1016/j.applanim.2020.105212

    Article  Google Scholar 

  66. Wasilewski T, Gebicki J, Kamysz W (2021) Bio-inspired approaches for explosives detection. TrAC Trends in Analytical Chemistry 142:116330. https://doi.org/10.1016/j.trac.2021.116330

    Article  CAS  Google Scholar 

  67. Yang J, Yan P, Li X, Zhao Z, Qin J, Li X (2022) Optical fiber bundle fluorescence sensor for a triacetone triperoxide vapor detection of trace explosives. Sensors and Actuators B Chem 371:132536. https://doi.org/10.1016/j.snb.2022.132536

    Article  CAS  Google Scholar 

  68. Wang W, Li H, Huang W, Chen C, Xu C, Ruan H, Li B, Li H (2023) Recent development and trends in the detection of peroxide-based explosives. Talanta 264:124763. https://doi.org/10.1016/j.talanta.2023.124763

    Article  CAS  PubMed  Google Scholar 

  69. Tan JF, Anastasi A, Chandra S (2022) Electrochemical detection of nitrate, nitrite and ammonium for on-site water quality monitoring. Current Opinion in Electrochemistry 32:100926. https://doi.org/10.1016/j.coelec.2021.100926

    Article  CAS  Google Scholar 

  70. Gutierrez S, Vega F, Gonzalez FA, Baer C, Sachs J (2019) Application of polarimetric features and support vector machines for classification of improvised explosive devices. IEEE Antennas and Wir Prop Lett 18(11):2282–2286

    Article  ADS  Google Scholar 

  71. Tivive FHC, Bouzerdoum A, Abeynayake C (2022) Classification of improvised explosive devices using multilevel projective dictionary learning with low-rank prior. IEEE Trans Geosci Remote Sens 60:1–16. https://doi.org/10.1109/TGRS.2022.3151335

    Article  Google Scholar 

  72. Tivive FHC, Bouzerdoum A, Abeynayake C (2022) Classification of improvised explosive devices using multilevel projective dictionary learning with low-rank prior. IEEE Trans Geosci Remote Sens 60:1–16. https://doi.org/10.1109/TGRS.2022.3151335

    Article  Google Scholar 

  73. Junjuri R, Prakash Gummadi A, Kumar Gundawar M (2020) Single-shot compact spectrometer based standoff libs configuration for explosive detection using artificial neural networks. Optik 204:163946. https://doi.org/10.1016/j.ijleo.2019.163946

    Article  CAS  ADS  Google Scholar 

  74. Li G, Chen S, Jia S, Lu Z, Cai J, Jiang S, Cao Y, Sun P, Xu H, Fan J, Li J, Jing S (2023) Prediction of explosives by a de-broadening model based on rbf neural network. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1057:168780. https://doi.org/10.1016/j.nima.2023.168780

    Article  CAS  Google Scholar 

  75. Amirian M, Schwenker F (2020) Radial basis function networks for convolutional neural networks to learn similarity distance metric and improve interpretability. IEEE Access 8:123087–123097. https://doi.org/10.1109/ACCESS.2020.3007337

    Article  Google Scholar 

  76. Bishnoi S, Thomas RG, Sarkar A, Sarkar PS, Sinha A, Saxena A, Gadkari SC (2019) Modeling of tagged neutron method for explosive detection using geant4. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 923:26–33. https://doi.org/10.1016/j.nima.2019.01.037

    Article  CAS  ADS  Google Scholar 

  77. Zhang J, Zou X, Kuang L-D, Wang J, Sherratt RS (2022) A more comprehensive traffic sign detection benchmark. Human-centric Computing and Information Sciences 12:2–18. https://centaur.reading.ac.uk/106129/1/12-23.pdf

  78. Zhang J, Zheng Z, Xie X, Gui Y, Kim G-J (2022) Reyolo: A traffic sign detector based on network reparameterization and features adaptive weighting. J Ambient Intell Smart Environ 14(4):317–334. https://doi.org/10.3233/AIS-220038

    Article  Google Scholar 

  79. Zhang J, Huang H, Jin X, Kuang L-D, Zhang J (2023) Siamese visual tracking based on criss-cross attention and improved head network. Multimed Tools Appl May, 1573–7721

  80. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Lourdes Agapito ea (ed) 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  81. Tan H, Lin W, Li X, Feng Y (2022) Design of intelligent classification trash can system. Proc Comput Sci 208:100–105. https://doi.org/10.1016/j.procs.2022.10.016

    Article  Google Scholar 

  82. Karthik M, Sreevidya L, Nithya Devi R, Thangaraj M, Hemalatha G, Yamini R (2023) An efficient waste management technique with iot based smart garbage system. Materials Today: Proceedings 80:3140–3143. https://doi.org/10.1016/j.matpr.2021.07.179 SI:5 NANO 2021

  83. Luo K, Zhao W, Zhang R (2024) A multi-day waste collection and transportation problem with selective collection and split delivery. Appl Math Model 126:753–771. https://doi.org/10.1016/j.apm.2023.11.009

    Article  MathSciNet  Google Scholar 

  84. Thung G, Yang M (2016) Classification of Trash for Recyclability Status. https://api.semanticscholar.org/CorpusID:27517432 Accessed 02 Dec 2023

  85. Fan H, Dong Q, Guo N, Xue J, Zhang R, Wang H, Shi M (2023) Raspberry pi-based design of intelligent household classified garbage bin. Internet of Things 24:100987. https://doi.org/10.1016/j.iot.2023.100987

    Article  Google Scholar 

  86. Ping P, Kumala E, Gao J, Xu G (2020) Smart street litter detection and classification based on faster R-CNN and edge computing. Int J Softw Eng Knowl Eng 30(4):537–553

    Article  Google Scholar 

  87. Chen W, Zhao Y, You T, Wang H, Yang Y, Yang K (2021) Automatic detection of scattered garbage regions using small unmanned aerial vehicle low-altitude remote sensing images for high-altitude natural reserve environmental protection. Environ Sci Technol 55(6):3604–3611. https://doi.org/10.1021/acs.est.0c04068

    Article  CAS  PubMed  ADS  Google Scholar 

  88. Zhang Q, Yang Q, Zhang X, Wei W, Bao Q, Su J, Liu X (2022) A multi-label waste detection model based on transfer learning. Resourc Conserv Recycl 181:106235. https://doi.org/10.1016/j.resconrec.2022.106235

    Article  Google Scholar 

  89. Shen Z, Yang Q, Jiang H (2023) Multichannel neighbor discovery in bluetooth low energy networks: Modeling and performance analysis. IEEE Trans Mobile Comput 22(4):2262–2280. https://doi.org/10.1109/TMC.2021.3113349

    Article  Google Scholar 

  90. Moloudi S, Mozaffari M, Veedu SNK, Kittichokechai K, Wang Y-PE, Bergman J, Höglund A (2021) Coverage evaluation for 5g reduced capability new radio (nr-redcap). IEEE Access 9:45055–45067. https://doi.org/10.1109/ACCESS.2021.3066036

    Article  Google Scholar 

  91. Kanj M, Savaux V, Le Guen M (2020) A tutorial on nb-iot physical layer design. IEEE Communications Surveys & Tutorials 22(4):2408–2446. https://doi.org/10.1109/COMST.2020.3022751

    Article  Google Scholar 

  92. Medina-Acosta GA, Zhang L, Chen J, Uesaka K, Wang Y, Lundqvist O, Bergman J (2022) 3g pp release-17 physical layer enhancements for lte-m and nb-iot. IEEE Communications Standards Magazine 6(4):80–86. https://doi.org/10.1109/MCOMSTD.0001.2100099

    Article  Google Scholar 

  93. Rukundo O (2023) Effects of image size on deep learning. MDPI Electronics 12(4). https://doi.org/10.3390/electronics12040985

  94. Ghosh K, Bellinger C, Corizzo R, Krawczyk B, Japkowicz N (2022) The class imbalance problem in deep learning. Springer Mach Learn

  95. Dai Q, Liu J-w, Shi Y-h (2023) Class-overlap undersampling based on schur decomposition for class-imbalance problems. Expert Syst Appl 221:119735. https://doi.org/10.1016/j.eswa.2023.119735

    Article  Google Scholar 

  96. Soltanzadeh P, Feizi-Derakhshi MR, Hashemzadeh M (2023) Addressing the class-imbalance and class-overlap problems by a metaheuristic-based under-sampling approach. Pattern Recogn 143:109721. https://doi.org/10.1016/j.patcog.2023.109721

    Article  Google Scholar 

  97. Soltanzadeh P, Feizi-Derakhshi MR, Hashemzadeh M (2023) Addressing the class-imbalance and class-overlap problems by a metaheuristic-based under-sampling approach. Pattern Recogn 143:109721. https://doi.org/10.1016/j.patcog.2023.109721

    Article  Google Scholar 

  98. SKLearn (2019) sklearn.preprocessing.StandardScaler. https://scikit-learn.org/stable/. Accessed 26 June 2023

  99. Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6. https://doi.org/10.1186/s40537-019-0197-0

  100. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958

    MathSciNet  Google Scholar 

  101. Gupta PK (2023) Python software libraries for computing with words (cww) methodologies. Neurocomput 559:126807. https://doi.org/10.1016/j.neucom.2023.126807

    Article  Google Scholar 

  102. Zhang Y, Zuo X, Zheng X, Gao X, Wang B, Hu W (2023) Improving metric-based few-shot learning with dynamically scaled softmax loss. Image Vision Comput 140:104860. https://doi.org/10.1016/j.imavis.2023.104860

    Article  Google Scholar 

  103. Zhang Y, Peng L, Quan L, Zhang Y, Zheng S, Chen H (2023) High-precision method and architecture for base-2 softmax function in dnn training. IEEE Transactions on Circuits and Systems I: Regular Papers 70(8):3268–3279. https://doi.org/10.1109/TCSI.2023.3277247

    Article  Google Scholar 

  104. Liu M, Chen L, Du X, Jin L, Shang M (2023) Activated gradients for deep neural networks. IEEE Trans Neural Netw Learn Syst 34(4):2156–2168. https://doi.org/10.1109/TNNLS.2021.3106044

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  105. Hu Z, Zhang J, Ge Y (2021) Handling vanishing gradient problem using artificial derivative. IEEE Access 9:22371–22377. https://doi.org/10.1109/ACCESS.2021.3054915

    Article  Google Scholar 

  106. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Lourdes Agapito ea (ed) IEEE Conf Comput Vision Pattern Recogn (CVPR), Las Vegas, NV, USA, pp 2818–2826. https://doi.org/10.1109/CVPR.2016.308

  107. Szegedy C, Liu W, Jia, Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Grauman K, LearnedMiller E, Torralba A, Zisserman A (eds) IEEE Conf Comput Vision Pattern Recogn (CVPR), Boston, MA, USA, pp 1–9. https://doi.org/10.1109/CVPR.2015.7298594

  108. Liu T, Zhang P, Huang W, Zha Y, You T, Zhang Y (2024) How does layer normalization improve batch normalization in self-supervised sound source localization? Neurocomput 567:127040. https://doi.org/10.1016/j.neucom.2023.127040

    Article  Google Scholar 

  109. Zoph B, Le QV (2017) Neural architecture search with reinforcement learning. In: Ranzato M (ed) The International Conference on Learning Representations (ICLR2017). ICLR, Toulon, France

    Google Scholar 

  110. Lin B (2024) Reinforcement learning and bandits for speech and language processing: Tutorial, review and outlook. Expert Syst Appl 238:122254. https://doi.org/10.1016/j.eswa.2023.122254

    Article  Google Scholar 

  111. Tan M, Le QV (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, ICML, vol 97, pp 6105–6114. PMLR, Long Beach, California, USA

  112. Chitty-Venkata KT, Mittal S, Emani M, Vishwanath V, Somani AK (2023) A survey of techniques for optimizing transformer inference. J Syst Architec 144:102990. https://doi.org/10.1016/j.sysarc.2023.102990

    Article  Google Scholar 

  113. Farooque G, Liu Q, Sargano AB, Xiao L (2023) Swin transformer with multiscale 3d atrous convolution for hyperspectral image classification. Eng Appl Artif Intell 126:107070. https://doi.org/10.1016/j.engappai.2023.107070

    Article  Google Scholar 

  114. Zhang J, Slamu W (2024) Partial channel pooling attention beats convolutional attention. Expert Syst Appl 237:121436. https://doi.org/10.1016/j.eswa.2023.121436

    Article  Google Scholar 

  115. Vallés-Pérez I, Soria-Olivas E, Martínez-Sober M, Serrano-López AJ, Vila-Francés J, Gómez-Sanchís J (2023) Empirical study of the modulus as activation function in computer vision applications. Eng Appl Artif Intell 120:105863. https://doi.org/10.1016/j.engappai.2023.105863

    Article  Google Scholar 

  116. Chen Z, Li X, Zhu X, Liu H, Tong H, Miao X (2023) Full-analog implementation of activation function based on phase-change memory for artificial neural networks. IEEE Trans Ind Electron 1–9. https://doi.org/10.1109/TIE.2023.3319711

  117. Al-Abri S, Lin TX, Tao M, Zhang F (2021) A derivative-free optimization method with application to functions with exploding and vanishing gradients. IEEE Control Systems Letters 5(2):587–592. https://doi.org/10.1109/LCSYS.2020.3004747

    Article  MathSciNet  Google Scholar 

  118. Pappas C, Kovaios S, Moralis-Pegios M, Tsakyridis A, Giamougiannis G, Kirtas M, Van Kerrebrouck J, Coudyzer G, Yin X, Passalis N, Tefas A, Pleros N (2023) Programmable tanh-, elu-, sigmoid-, and sin-based nonlinear activation functions for neuromorphic photonics. IEEE J Sel Topics Quantum Electron. 29 (6: Photonic Signal Processing), 1–10. https://doi.org/10.1109/JSTQE.2023.3277118

  119. Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. The MIT Press, Cambridge, MA, US

    Google Scholar 

  120. Jung HC, Maly J, Palzer L, Stollenwerk A (2021) Quantized compressed sensing by rectified linear units. IEEE Trans Inf Theor 67(6):4125–4149. https://doi.org/10.1109/TIT.2021.3070789

    Article  MathSciNet  Google Scholar 

  121. Li B, Shi G (2022) A cmos rectified linear unit operating in weak inversion for memristive neuromorphic circuits. Integration 87:24–28. https://doi.org/10.1016/j.vlsi.2022.05.007

    Article  Google Scholar 

  122. Parhi R, Nowak RD (2020) The role of neural network activation functions. IEEE Signal Processing Letters 27:1779–1783. https://doi.org/10.1109/LSP.2020.3027517

    Article  ADS  Google Scholar 

  123. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Katsushi Ikeuchi ea (ed) 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, pp 1026–1034. https://doi.org/10.1109/ICCV.2015.123

  124. Adem K (2022) Impact of activation functions and number of layers on detection of exudates using circular hough transform and convolutional neural networks. Expert Syst Appl 203:117583. https://doi.org/10.1016/j.eswa.2022.117583

    Article  Google Scholar 

  125. De Oliveira JP, Costa MGF, Filho C (2020) Methodology of data fusion using deep learning for semantic segmentation of land types in the amazon. IEEE Access 8:187864–187875. https://doi.org/10.1109/ACCESS.2020.3031533

    Article  Google Scholar 

  126. Tian Y, Zhang Y (2022) A comprehensive survey on regularization strategies in machine learning. Information Fusion 80:146–166. https://doi.org/10.1016/j.inffus.2021.11.005

    Article  Google Scholar 

  127. Polyak BT (2020) Introduction to Optimization. Optimization Software Inc, New York, USA

    Google Scholar 

  128. Büyükkaya K, Ozan Karsavuran M, Aykanat C (2023) Stochastic gradient descent for matrix completion: Hybrid parallelization on shared- and distributed-memory systems. Knowledge-Based Systems 111176. https://doi.org/10.1016/j.knosys.2023.111176

  129. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536

    Article  ADS  Google Scholar 

  130. Talordphop K, Sukparungsee S, Areepong Y (2023) On designing new mixed modified exponentially weighted moving average - exponentially weighted moving average control chart. Results in Engineering 18:101152. https://doi.org/10.1016/j.rineng.2023.101152

    Article  Google Scholar 

  131. Toraman SC, Yucel H (2023) A stochastic gradient algorithm with momentum terms for optimal control problems governed by a convection-diffusion equation with random diffusivity. J Comput Appl Math 422:114919. https://doi.org/10.1016/j.cam.2022.114919

    Article  MathSciNet  Google Scholar 

  132. Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: Ranzato M (ed) Poster Presentation at the International Conference on Learning Representations (ICLR), San Diego. CA, USA

    Google Scholar 

  133. Li P, He X, Cheng X, Qiao M, Song D, Chen M, Zhou T, Li J, Guo X, Hu S, Tian Z (2022) An improved categorical cross entropy for remote sensing image classification based on noisy labels. Expert Syst Appl 205:117296. https://doi.org/10.1016/j.eswa.2022.117296

    Article  Google Scholar 

  134. Ho Y, Wookey S (2020) The real-world-weight cross-entropy loss function: Modeling the costs of mislabeling. IEEE Access 8:4806–4813. https://doi.org/10.1109/ACCESS.2019.2962617

    Article  Google Scholar 

  135. Pancino N, Bongini P, Scarselli F, Bianchini M (2022) Gnnkeras: A keras-based library for graph neural networks and homogeneous and heterogeneous graph processing. SoftwareX 18:101061. https://doi.org/10.1016/j.softx.2022.101061

    Article  Google Scholar 

  136. Si M, Tarnoczi TJ, Wiens BM, Du K (2019) Development of predictive emissions monitoring system using open source machine learning library - keras: A case study on a cogeneration unit. IEEE Access 7:113463–113475. https://doi.org/10.1109/ACCESS.2019.2930555

    Article  Google Scholar 

  137. Clarke DJB, Jeon M, Stein DJ, Moiseyev N, Kropiwnicki E, Dai C, Xie Z, Wojciechowicz ML, Litz S, Hom J, Evangelista JE, Goldman L, Zhang S, Yoon C, Ahamed T, Bhuiyan S, Cheng M, Karam J, Jagodnik KM, Shu I, Lachmann A, Ayling S, Jenkins SL, Ma’ayan A (2021) Appyters: Turning jupyter notebooks into data-driven web apps. Patterns 2(3):100213. https://doi.org/10.1016/j.patter.2021.100213

    Article  PubMed  PubMed Central  Google Scholar 

  138. Miseta T, Fodor A, Vathy-Fogarassy A (2024) Surpassing early stopping: A novel correlation-based stopping criterion for neural networks. Neurocomput 567:127028. https://doi.org/10.1016/j.neucom.2023.127028

    Article  Google Scholar 

  139. Valero-Carreras D, Alcaraz J, Landete M (2023) Comparing two svm models through different metrics based on the confusion matrix. Comput Oper Res 152:106131. https://doi.org/10.1016/j.cor.2022.106131

    Article  MathSciNet  Google Scholar 

  140. Heydarian M, Doyle TE, Samavi R (2022) Mlcm: Multi-label confusion matrix. IEEE Access 10:19083–19095. https://doi.org/10.1109/ACCESS.2022.3151048

  141. Gupta S, Ullah S, Ahuja K, Tiwari A, Kumar A (2020) Align: A highly accurate adaptive layerwise log_2_lead quantization of pre-trained neural networks. IEEE Access 8:118899–118911. https://doi.org/10.1109/ACCESS.2020.3005286

    Article  Google Scholar 

  142. Marrone S, Papa C, Sansone C (2021) Effects of hidden layer sizing on cnn fine-tuning. Futur Gener Comput Syst 118:48–55. https://doi.org/10.1016/j.future.2020.12.020

Download references

Funding

This research work did not receive any specific funding from government, commercial nor non-profit organizations.

Author information

Authors and Affiliations

Authors

Contributions

This is a single-author article by Amoakoh Gyasi-Agyei, and as such, everything in this article was done by himself, including data collection, material preparation, methodology and experimentation.

Corresponding author

Correspondence to Amoakoh Gyasi-Agyei.

Ethics declarations

Competing Interests

Not applicable.

Conflict of Interest

The author declares that he has no conflict of interest to report regarding the present study.

Ethical and Informed Consent for Data Used

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gyasi-Agyei, A. Detection of explosives in dustbins using deep transfer learning based multiclass classifiers. Appl Intell 54, 2314–2347 (2024). https://doi.org/10.1007/s10489-023-05249-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-05249-1

Keywords