Skip to main content
Log in

Link prediction using deep autoencoder-like non-negative matrix factorization with L21-norm

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Link prediction aims to predict missing links or eliminate spurious links and anticipate new links by analyzing observed network topological structure information. Non-negative matrix factorization(NMF) is widely used in solving the issue of link prediction due to its good interpretability and scalability. However, most existing NMF-based approaches involve shallow decoder models, which are incapable of capturing complex hierarchical information hidden in networks, and seldom consider random noise. To address these issues, a novel deep autoencoder-like nonnegative matrix factorization method with \(\varvec{L_{2,1}}\) norm for link prediction models(DANMFL) is proposed. Unlike conventional NMF-based approaches, our model contains a decoder component and an encoder component, which capture complex hierarchical information effectively, leading to more accurate prediction results. In addition, we use the \(\varvec{L_{2,1}}\) norm to remove random noise in each layer and the convergence of our model is strictly proven. We conduct extensive experiments on twelve real-world networks and the experimental results show that DANMFL is superior to existing state-of-the-art baseline approaches in terms of prediction accuracy. Codes are available at https://github.com/litongf/DANMFL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yao Y, Cheng T, Li X et al (2023) Link prediction based on the mutual information with high-order clustering structure of nodes in complex networks. Physica A Stat Mech Appl 610:128428

    MathSciNet  Google Scholar 

  2. Chai L, Tu L, Yu X et al (2023) Link prediction and its optimization based on low-rank representation of network structures. Expert Syst Appl 219:119680

    Google Scholar 

  3. Ai J, Cai Y, Su Z et al (2022) Predicting user-item links in recommender systems based on similarity-network resource allocation. Chaos, Solitons Fractals 158:112032

    Google Scholar 

  4. Su Z, Zheng X, Ai J et al (2020) Link prediction in recommender systems based on vector similarity. Physica A Stat Mech Appl 560:125154

    Google Scholar 

  5. Kumar A, Singh SS, Singh K et al (2020) Link prediction techniques, applications, and performance: a survey. Physica A Stat Mech Appl 553:124289

    MathSciNet  Google Scholar 

  6. Cao YGJZSWGZ, Zhang (2019) A chaotic ant colony optimized link prediction algorithm. IEEE Trans Syst Man Cybern Syst PP(99):1–15

  7. Lorrain F, White HC (1971) The structural equivalence of individuals in social networks. J Math Sociol 1(1):49–80

    Google Scholar 

  8. Adamic LA, Adar E (2003) Friends and neighbors on the web. Soc Networks 25(3):211–230

    Google Scholar 

  9. Zhou T, Lü L, Zhang YC (2009) Predicting missing links via local information. Eur Phys J B 71(4):623–630

    Google Scholar 

  10. Ahmad I, Akhtar MU, Noor S et al (2020) Missing link prediction using common neighbor and centrality based parameterized algorithm. Sci Rep 10(1):364

    Google Scholar 

  11. Zhou T, Lee YL, Wang G (2021) Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms. Physica A Stat Mech Appl 564:125532

    Google Scholar 

  12. Rafiee S, Salavati C, Abdollahpouri A (2020) CNDP: Link prediction based on common neighbors degree penalization. Physica A Stat Mech Appl 539:122950

    Google Scholar 

  13. Pech R, Hao D, Lee YL et al (2019) Link prediction via linear optimization. Physica A Stat Mech Appl 528:121319

    MathSciNet  Google Scholar 

  14. Wang C, Satuluri V, Parthasarathy S (2007) Local probabilistic models for link prediction. Seventh ieee international conference on data mining (ICDM 2007) 322–331

  15. Xzab C, Wpab C, Yx D (2018) An intermediary probability model for link prediction. Physica A Stat Mech Appl 512:902–912

    Google Scholar 

  16. Clauset CNMA, Moore (2008) Hierarchical structure and the prediction of missing links in networks. Nature 453(7191):98–101

  17. Guimer R, Sales-Pardo M (2009) Missing and spurious interactions and the reconstruction of complex networks. Proc Natl Acad Sci 106(52):22073–22078

    Google Scholar 

  18. Kuang J, Scoglio C (2021) Layer reconstruction and missing link prediction of a multilayer network with maximum \(a posteriori\) estimation. Phys Rev E 104:024301

    Google Scholar 

  19. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. Association for Computing Machinery, New York, NY, USA, KDD ’14, pp 701–710

  20. Chen G, Xu C, Wang J et al (2019) Graph regularization weighted nonnegative matrix factorization for link prediction in weighted complex network. Neurocomputing 369(Dec.5):50–60

    Google Scholar 

  21. Wang W, Cai F, Jiao P et al (2016) A perturbation-based framework for link prediction via non-negative matrix factorization. Sci Rep 6(1):38938

    Google Scholar 

  22. Chen G, Xu C, Wang J et al (2020) Nonnegative matrix factorization for link prediction in directed complex networks using pagerank and asymmetric link clustering information. Expert Syst Appl 148:113290

    Google Scholar 

  23. Chen G, Xu C, Wang J et al (2020) Robust non-negative matrix factorization for link prediction in complex networks using manifold regularization and sparse learning. Physica A Stat Mech Appl 539:122882

    MathSciNet  Google Scholar 

  24. Mahmoodi R, Seyedi SA, Akhlaghian Tab F et al (2023) Link prediction by adversarial nonnegative matrix factorization. Knowl-Based Syst 280:110998

    Google Scholar 

  25. Chen G, Wang H, Fang Y et al (2022) Link prediction by deep non-negative matrix factorization. Expert Syst Appl 188:115991

    Google Scholar 

  26. Zhou T (2021) Progresses and challenges in link prediction. IScience 24(11):103217

    Google Scholar 

  27. Jinyin Chen XW, Xu X (2022) Gc-lstm: graph convolution embedded lstm for dynamic network link prediction. Appl Intell 52:7513–7528

    Google Scholar 

  28. Le T, Le N, Le B (2023) Knowledge graph embedding by relational rotation and complex convolution for link prediction. Expert Syst Appl 214:119122

    Google Scholar 

  29. Herlau T, Mørup M, Schmidt MN et al (2012) Detecting hierarchical structure in networks. In: 2012 3rd International workshop on cognitive information processing (CIP), 1–6

  30. Newman MEJ (2018) Network structure from rich but noisy data. Nat Phys 14:542–545

    Google Scholar 

  31. Dong S, Wang P, Abbas K (2021) A survey on deep learning and its applications. Comput Sci Rev 40:100379

    MathSciNet  Google Scholar 

  32. Ye F, Chen C, Zheng Z (2018) Deep autoencoder-like nonnegative matrix factorization for community detection. In: Proceedings of the 27th ACM international conference on information and knowledge management. Association for Computing Machinery, New York, NY, USA, CIKM ’18, pp 1393-1402

  33. Zhang M (2020) Structural deep nonnegative matrix factorization for community detection. Appl Soft Comput 97:106846

    Google Scholar 

  34. De Handschutter P, Gillis N, Siebert X (2021) A survey on deep matrix factorizations. Comput Sci Rev 42:100423

    MathSciNet  Google Scholar 

  35. Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43

  36. Salton GMM (1983) Introduction to modern information retrieval. Inf Process Manage 19:402–403

    Google Scholar 

  37. Liu W, Lü L (2010) Link prediction based on local random walk. EPL (Europhysics Letters) 89(5):58007

    Google Scholar 

  38. Aziz F, Gul H, Muhammad I et al (2020) Link prediction using node information on local paths. Physica A Stat Mech Appl 557:124980

    Google Scholar 

  39. Leicht EA, Holme P, Newman MEJ (2006) Vertex similarity in networks. Phys Rev E Stat Nonlin Soft Matter Phys 73(2 Pt 2):026120

    Google Scholar 

  40. Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30(1):107–117. proceedings of the Seventh International World Wide Web Conference

  41. Menon AK, Elkan C (2011) Link prediction via matrix factorization. Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2011, Athens, Greece, September 5-9, 2011, Proceedings, Part II

  42. Pech R, Hao D, Pan L, Cheng H, Zhou T (2017) Link prediction via matrix completion. EPL (Europhysics Letters) 117:38002

  43. Wang W, Fei C, Jiao P et al (2016) A perturbation-based framework for link prediction via non-negative matrix factorization. Sci Rep 6:38938

    Google Scholar 

  44. Chen B, Li F, Chen S et al (2017) Link prediction based on non-negative matrix factorization. PLoS ONE 12(8):e0182968

    Google Scholar 

  45. Ma X, Sun P, Qin G (2017) Nonnegative matrix factorization algorithms for link prediction in temporal networks using graph communicability. Pattern Recognit 71:361–374

    Google Scholar 

  46. Wang W, Feng Y, Jiao P et al (2017) Kernel framework based on non-negative matrix factorization for networks reconstruction and link prediction. Knowl-Based Sys 137(dec1):104–114

    Google Scholar 

  47. Wang Z, Liang J, Li R (2018) A fusion probability matrix factorization framework for link prediction. Knowl-Based Sys 159:72–85

    Google Scholar 

  48. Akbar JA, Anthony K, Wu FX (2020) Mdipa: a microrna-drug interaction prediction approach based on non-negative matrix factorization. Bioinformatics 36:5061–5067

    Google Scholar 

  49. Du X, Yan J, Zhang R et al (2022) Cross-network skip-gram embedding for joint network alignment and link prediction. IEEE Trans Knowl Data Eng 34(3):1080–1095

    Google Scholar 

  50. Xiao Y, Li R, Lu X et al (2021) Link prediction based on feature representation and fusion. Inf Sci 548:1–17

    MathSciNet  Google Scholar 

  51. Nasiri E, Berahmand K, Rostami M et al (2021) A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding. Comput Biol Med 137:104772

    Google Scholar 

  52. Barracchia EP, Pio G, Bifet A et al (2022) Lp-robin: Link prediction in dynamic networks exploiting incremental node embedding. Inf Sci 606:702–721

    Google Scholar 

  53. Zhou M, Han Q, Li M et al (2023) Nearest neighbor walk network embedding for link prediction in complex networks. Physica A Stat Mech Appl 620:128757

    Google Scholar 

  54. Lee D, Seung HS (2000) Algorithms for non-negative matrix factorization. In: Leen T, Dietterich T, Tresp V (eds) Advances in Neural Information Processing Systems, vol 13. MIT Press

    Google Scholar 

  55. Sun BJ, Shen H, Gao J, et al (2017) A non-negative symmetric encoder-decoder approach for community detection. Proceedings of the 2017 ACM on conference on information and knowledge management pp 597-606

  56. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    MathSciNet  Google Scholar 

  57. Arrar D, Kamel N, Lakhfif A (2023) A comprehensive survey of link prediction methods. The journal of supercomputing pp 1–41

  58. Zhou T (2023) Discriminating abilities of threshold-free evaluation metrics in link prediction. Physica A Stat Mech Appl 615:128529

    Google Scholar 

  59. Rossi RA, Ahmed NK (2015) The network data repository with interactive graph analytics and visualization. AAAI https://networkrepository.com

  60. Kunegis J (2013) Konect–the koblenz network collection. In Proc Int Conf on World Wide Web Companion 1343–1350

  61. Zhou M, Jin H, Wu Q et al (2021) Betweenness centrality-based community adaptive network representation for link prediction. Appl Intell 52:3545–3558

  62. Ding CH, Li T, Jordan MI (2010) Convex and semi-nonnegative matrix factorizations. IEEE Trans Pattern Anal Mach Intell 32(1):45–55

    Google Scholar 

Download references

Acknowledgements

This work is supported by Qinghai Province key research and development and transformation plan project(2022-GX-155); National Natural Science Fund:Research on Key Technologies of high-quality construction of Thangka and mural digital resources based on semi interaction(62262056);the National Natural Science Foundation of China (No. 62366030), the Gansu Provincial Natural Science Foundation (No.23JRRA8222), the Higher Education Innovation Fund project of Gansu (No. 2022A-022);Qinghai Key Laboratory of Internet of Things. Additionally, during the revision of this paper, we would like to express our sincere gratitude to Yangyang He and Puhe You for their invaluable experimental support and writing guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruisheng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Derivation for Eq. (17) and Eq. (22)

Appendix A: Derivation for Eq. (17) and Eq. (22)

In this part, we will analyse the convergence of DANMFL and give the theoretical proof. Next, we list the following theorems:

Theorem 1

Updating W using the rule of (17) while fixing the rest variables, the objective function L(W) monotonically decreases.

Theorem 2

Updating V using the rule of (22) while fixing the rest variables, the objective function L(V) monotonically decreases.

We utilize auxiliary function [54] to help us prove theorems 1 and 2.

Definition 3.1

\(G(h,h')\) is an auxiliary function for F(h) if the conditions in (A1) are satisfied.

$$\begin{aligned} G(h,h')\ge F(h),\ \ G(h,h)=F(h) \end{aligned}$$
(A1)

The function is really helpful by reason of the following lemma.

Lemma 3.2

   If G is an auxiliary function of L, then L is non-increasing under the update

$$\begin{aligned} h^{t+1}=\underset{h}{\arg \min }\ G(h,h^{t}) \end{aligned}$$
(A2)

Proof

\(L(h^{t+1})\le G(h^{t+1},h^{t})\le G(h^{t},h^{t})=L(h^{t})\) \(\square \)

Lemma 3.3

Let \(A\in \mathbb {R}^{n\times n}\) is an any nonnegative matrix, \(B\in \mathbb {R}^{k\times k}\), \(S \in \mathbb {R}^{n\times k}\), \(S'\in \mathbb {R}^{n\times k}\), A and B are symmetric, then the following inequality holds [62]:

$$\begin{aligned} \sum _{i=1}^{n}\sum _{j=1}^{k}\frac{(AS'B)_{ij}S_{ij}^2}{S'_{ij}}\ge Tr(S^TASB) \end{aligned}$$
(A3)

Here, we firstly prove the theorem 1 and rewrite the objective function L with removing unrelated elements.

$$\begin{aligned} L(W_{i})= & {} Tr(-2\Phi _{i+1}V_{i}X^T \Psi _{i-1}W_{i}+\Psi _{i-1}^T\Psi _{i-1}W_{i}\Phi _{i+1}\nonumber \\{} & {} \times V_{i}V_{i}^T\Phi _{i+1}^TW_{i}^T) +Tr(-2\Psi _{i-1}^T X V_{i}^T\Phi _{i+1}^T W_{i}^T\nonumber \\{} & {} +\Phi _{i+1}\Phi _{i+1}^TW_{i}^T\Psi _{i-1}^T X X^T\Psi _{i-1} W_{i}) \end{aligned}$$
(A4)

According to the formulas: \(Tr(A^T)=Tr(A)\) and \(Tr(AB) \) \( =Tr(BA)\), the (A4) can be further described as following:

$$\begin{aligned} L(W_{i})= & {} Tr(\Psi _{i-1}^T\Psi _{i-1}W_{i}\Phi _{i+1}V_{i}V_{i}^T\Phi _{i+1}^TW_{i}^T\nonumber \\{} & {} +\Phi _{i+1}\Phi _{i+1}^TW_{i}^T\Psi _{i-1}^T X X^T\Psi _{i-1} W_{i})\nonumber \\{} & {} -4Tr(\Phi _{i+1}V_{i}X^T \Psi _{i-1}W_{i}) \end{aligned}$$
(A5)

Let

$$\begin{aligned} \begin{aligned} G((W_{i}),(W_{i})')=&\sum _{kl}\frac{(\Psi _{i-1}^T\Psi _{i-1} W_{i}'\Phi _{i+1} V_{i} V_{i}^T \Phi _{i+1}^T)_{kl}((W_{i})_{kl})^2}{(W_{i})'_{kl}}\\ +&\sum _{kl}\frac{(\Psi _{i-1}^TXX^T\Psi _{i-1}W_{i}'\Phi _{i+1} \Phi _{i+1}^T)_{kl} ((W_{i})_{kl})^2}{(W_{i})'_{kl}}\\ -&4(\Psi _{i-1}^TX V_{i}^T\Phi _{i+1}^T)_{kl}(W_{i})'_{ij}(1+\log {\frac{(W_{i})_{kl}}{(W_{i})'_{kl}}}) \end{aligned} \end{aligned}$$
(A6)

be an auxiliary function of \(L(W_{i})\). Obviously, when \((W_{i})=(W_{i})'\), \(G((W_{i}),(W_{i})')=L(W_{i})\). Therefore, we need to prove \(G((W_{i}),(W_{i})')\le L(W_{i})\) here. When \((W_{i})')\ne L(W_{i})\), according to Lemma 3.3 and inequation \(z\ge 1+\log z\), we get the following inequations:

$$\begin{aligned}{} & {} \sum _{kl}\frac{(\Psi _{i-1}^T\Psi _{i-1} W_{i}'\Phi _{i+1} V_{i} V_{i}^T \Phi _{i+1}^T)_{kl}((W_{i})_{kl})^2}{(W_{i})'_{kl}}\nonumber \\{} & {} \quad>Tr(\Psi _{i-1}^T\Psi _{i-1}W_{i}\Phi _{i+1}V_{i}V_{i}^T\Phi _{i+1}^TW_{i}^T) \nonumber \\{} & {} \sum _{kl}\frac{(\Psi _{i-1}^TXX^T\Psi _{i-1}W_{i}'\Phi _{i+1} \Phi _{i+1}^T)_{kl} ((W_{i})_{kl})^2}{(W_{i})'_{kl}} \nonumber \\{} & {} \quad>Tr(\Phi _{i+1}\Phi _{i+1}^TW_{i}^T\Psi _{i-1}^T X X^T\Psi _{i-1} W_{i}) \nonumber \\{} & {} Tr(\Phi _{i+1}V_{i}X^T \Psi _{i-1}W_{i})>\sum _{kl}(\Psi _{i-1}^TX V_{i}^T\Phi _{i+1}^T)_{kl}(W_{i})'_{ij}\nonumber \\{} & {} \quad \times (1+\log {\frac{(W_{i})_{kl}}{(W_{i})'_{kl}}}) \end{aligned}$$
(A7)

Summing all above bounds and we get the following inequations:

$$\begin{aligned} G((W_{i}),(W_{i})')>L(W_{i}) \end{aligned}$$
(A8)

Hence, \(G((W_{i}),(W_{i})')\) is an auxiliary function of \(L(W_{i})\). To get the global minimum value of function \(G((W_{i}),(W_{i})')\), we fix the \(W_{i}'\) and take the derivative of \(G((W_{i}),(W_{i})')\) on \((W_{i})_{kl}\).

$$\begin{aligned} \begin{aligned} \frac{\partial G((W_{i}),(W_{i})')}{\partial ( W_{i})_{kl})}=&2\frac{(\Psi _{i-1}^T\Psi _{i-1} W_{i}'\Phi _{i+1} V_{i} V_{i}^T \Phi _{i+1}^T)_{kl}((W_{i})_{kl})}{(W_{i})'_{kl}}\\ +&2\frac{(\Psi _{i-1}^TXX^T\Psi _{i-1}W_{i}'\Phi _{i+1} \Phi _{i+1}^T)_{kl} ((W_{i})_{kl})}{(W_{i})'_{kl}}\\ -&4(\Psi _{i-1}^TX V_{i}^T\Phi _{i+1}^T)_{kl}(\frac{(W_{i})'_{kl}}{(W_{i})_{kl}}) \end{aligned} \end{aligned}$$
(A9)

Because the Hessian matrix \(\frac{\partial ^{2} G((W_{i}),(W_{i})_{kl}')}{\partial (W_{i})_{kl}\partial ( W_{i})_{kl}}\) is positive define, the \(G((W_{i}),(W_{i})')\) is a convex function. Setting \(\frac{\partial G((W_{i}),(W_{i})_{kl}')}{\partial ( W_{i})_{kl})}\)=0 and based on the KTT conditions, we get the following updating rules:

$$\begin{aligned} W_{i}\!\leftarrow \! W_{i}'\odot \frac{2\Psi _{i-1}^T XV_{p}^T\Phi _{i+1}^T}{\Psi _{i-1}^T\Psi _{i-1}W_{i}'\Phi _{i+1}^T V_{p} V_{p}^T \Phi _{i+1}^T\!+\!\Psi _{i-1}^T X X^T \Psi _{i-1}W_{i}'\Phi _{i+1}\Phi _{i+1}^T} \end{aligned}$$
(A10)

Noting \(W^{t+1}\leftarrow W\) and \(W^{t}\leftarrow W'\), the (A10) recovers the (17).Thus, the objective function L monotonically decreases according to the updating rule. Equation (17) for L.

Next, we will prove the theorem 2. Let us rewrite the (18) here:

$$\begin{aligned} L(V_{i})=||X-\Psi _{i}V_{i}||^2_{F}+||V_{i}-\Psi _{i}^T X||_{F}^2+\beta Tr(V_{i}^T D V_{i}) \end{aligned}$$
(A11)

According to the relationship between matrix norm and matrix trace, we rewrite the equation L with removing irrelevant elements:

$$\begin{aligned} L(V_{i})=Tr(-4X^T\Psi _{i} V_{i}+V_{i}^TV_{i}+V_{i}^TDV_{i}+V_{i}^T\Psi _{i}^T\Psi _{i} V_{i}) \end{aligned}$$
(A12)

Now an auxiliary function of (A12) is

$$\begin{aligned} \begin{aligned} G((V_{i}),(V_{i})')&\!=\!\sum _{kl}\frac{(\Psi _{i-1}^T\Psi _{i} V_{i}')_{kl}(V_{i})^2_{kl}}{(V_{i}')_{kl}}\!+\!\sum _{kl}(V_{i})_{kl}(V_{i})_{kl}\\ {}&+\sum _{kl}(V_{i})_{kl}D(V_{i})_{kl}-4\sum _{kl}(\Psi _{i}^T X)_{kl}(V_{i})'_{kl}\\&\times (1+\log \frac{(V_{i})_{kl}}{(V_{i})'_{kl}}) \end{aligned} \end{aligned}$$
(A13)

When \((V_{i})'=(V_{i})\), clearly \(G(V_{i},V_{i}')=L(V_{i})\). Hence, we need to prove \(G(V_{i},V_{i}')>L(V_{i})\) here. Based on Lemma 3.3 and \(z\ge 1+\log z\), we get the following inequations:

$$\begin{aligned} \begin{aligned} \sum _{kl}\frac{(\Psi _{i-1}^T\Psi _{i} V_{i}')_{kl}(V_{i})^2_{kl}}{(V_{i}')_{kl}}>Tr(V_{i}^T\Psi _{i}^T\Psi _{i} V_{i})\\ Tr(X^T\Psi _{i}V_{i})>\sum _{kl}(\Psi _{i}^T X)_{kl}(V_{i})'_{kl}(1+\log \frac{(V_{i})_{kl}}{(V_{i})'_{kl}}) \end{aligned} \end{aligned}$$
(A14)

The first term of (A13) is always bigger than the fourth term of (A12) and the fourth term of (A13) is always smaller than the first term of (A12). Therefore, we get \(G((V_{i}),(V_{i})')>L(V_{i})\). Our objective now is to obtain the global minimum value of \(G((V_{i}),(V_{i}'))\). The derivative of \(G((V_{i}),(V_{i})')\) is

$$\begin{aligned} \begin{aligned} \frac{\partial G((V_{i}),(V_{i})')}{\partial (V_{i})_{kl}}&=2\frac{(\Psi _{i-1}^T\Psi _{i} V_{i}')_{kl}(V_{i})_{kl}}{(V_{i})'_{kl}}+2(V_{i})_{kl}\\ {}&+2D(V_{i})_{kl}-4(\Psi _{i}^TX)_{kl}\frac{(V_{i})'_{kl}}{(V_{i})_{kl}} \end{aligned} \end{aligned}$$
(A15)

Because the Hessian matrix \(\frac{\partial ^{2} G((V_{i}),(V_{i})_{kl}')}{\partial (V_{i})_{kl}\partial ( V_{i})_{kl}}\) is positive define and the \(G((V_{i}),(V_{i})')\) is a convex function. Setting \(\frac{\partial G((V_{i}),(V_{i})_{kl}')}{\partial ( V_{i})_{kl})}\)=0 and according to the KTT condition, we get the following updating rules:

$$\begin{aligned} V_{i}\leftarrow V_{i}'\odot \frac{2\Psi _{i}X}{\Psi _{i-1}^T\Psi _{i-1}V_{i}'+V_{i}'+\beta DV_{i}'} \end{aligned}$$
(A16)

Noting \(V^{t+1}\leftarrow V\) and \(V^{t}\leftarrow V'\), the (A16) recovers the (22). Therefore, objective function L monotonically decreases under the update rule (22) for L.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Zhang, R., Yao, Y. et al. Link prediction using deep autoencoder-like non-negative matrix factorization with L21-norm. Appl Intell 54, 4095–4120 (2024). https://doi.org/10.1007/s10489-024-05365-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-024-05365-6

Keywords

Navigation