Skip to main content
Log in

An integrated framework for accurate trajectory prediction based on deep learning

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Trajectory prediction for moving objects is a critical task for intelligent transportation with numerous applications, such as route planning, traffic management, congestion alleviation, etc. In this paper, we propose a novel framework that integrates sequence modeling, trajectory clustering and topology extraction to improve the accuracy of trajectory prediction. By incorporating self-attention for sequence modeling, we are able to effectively capture the temporal dependencies in trajectory data. Additionally, by taking into account the clustering information via a variational auto-encoder and the topological information based on a graphical neural network (GNN), we can further improve the accuracy of trajectory prediction. Furthermore, integrating a GNN facilitates our framework to handle diverse characteristics of road networks, such as road distance and traffic status, thereby making the proposed approach adaptive to different practical scenarios. As demonstrated by the experimental results on two publicly available datasets, our proposed method improves the accuracies by up to 0.5% and 3.8% for 1-step and 15-step predictions respectively, compared to the state-of-the-art method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The datasets used in our study are available using the following links: Porto dataset-https://www.kaggle.com/datasets/crailtap/taxi-trajectory. Chengdu dataset-https://pan.baidu.com/s/1OeNs36fZHEon2yNA2bhs9A with access code hqen.

References

  1. Lamssaggad A, Benamar N, Hafid AS, Msahli M (2021) A survey on the current security landscape of intelligent transportation systems. IEEE Access 9:9180–9208

    Article  Google Scholar 

  2. Kaffash S, Nguyen AT, Zhu J (2021) Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis. Int J Prod Econ 231:107868

    Article  Google Scholar 

  3. Fatemidokht H, Rafsanjani MK, Gupta BB, Hsu C-H (2021) Efficient and secure routing protocol based on artificial intelligence algorithms with uav-assisted for vehicular ad hoc networks in intelligent transportation systems. IEEE Trans Intell Transp Syst 22(7):4757–4769

    Article  Google Scholar 

  4. Veres M, Moussa M (2019) Deep learning for intelligent transportation systems: A survey of emerging trends. IEEE Trans Intell Transp Syst 21(8):3152–3168

    Article  Google Scholar 

  5. Zhang J, Wang F-Y, Wang K, Lin W-H, Xu X, Chen C (2011) Data-driven intelligent transportation systems: A survey. IEEE Trans Intell Transp Syst 12(4):1624–1639

    Article  Google Scholar 

  6. Huang Y, Du J, Yang Z, Zhou Z, Zhang L, Chen H (2022) A survey on trajectory-prediction methods for autonomous driving. IEEE Trans Intell Veh 7(3):652–674

    Article  Google Scholar 

  7. Tan M, Shen H, Xi K, Chai B (2023) Trajectory prediction of flying vehicles based on deep learning methods. Appl Intell 53(11):13621–13642

    Article  Google Scholar 

  8. Zhang X, Fu X, Xiao Z, Xu H, Qin Z (2022) Vessel trajectory prediction in maritime transportation: Current approaches and beyond. IEEE Trans Intell Transp Syst

  9. Zhong G, Zhang H, Zhou J, Zhou J, Liu H (2022) Short-term 4d trajectory prediction for uav based on spatio-temporal trajectory clustering. IEEE Access 10:93362–93380

    Article  Google Scholar 

  10. Rathore P, Kumar D, Rajasegarar S, Palaniswami M, Bezdek JC (2019) A scalable framework for trajectory prediction. IEEE Trans Intell Transp Syst 20(10):3860–3874

    Article  Google Scholar 

  11. Neumeier M, Botsch M, Tollkühn A, Berberich T (2021) Variational autoencoder-based vehicle trajectory prediction with an interpretable latent space. In: IEEE Int. Intell. Transp. Syst. Conf. IEEE, p 820–827

  12. Bharilya V, Kumar N (2024) Machine learning for autonomous vehicle’s trajectory prediction: A comprehensive survey, challenges, and future research directions. Vehic Comm 100733

  13. Asahara A, Maruyama K, Sato A, Seto K (2011) Pedestrian-movement prediction based on mixed markov-chain model. In: Proc. ACM SIGSPATIAL. p 25–33

  14. Wang B, Hu Y, Shou G, Guo Z (2016) Trajectory prediction in campus based on markov chains. In: Proc. BigCom. Springer, p 145–154

  15. Wu H, Chen Z, Sun W, Zheng B, Wang W (2017) Modeling trajectories with recurrent neural networks. In: Proc. 26th Int. Joint Conf. Artif. Intell., vol. 25. p 3083–3090

  16. Ip A, Irio L, Oliveira R (2021) Vehicle trajectory prediction based on lstm recurrent neural networks. In: Proc. IEEE 93rd Veh. Technol. Conf. IEEE, p 1–5

  17. Yan M, Li S, Chan CA, Shen Y, Yu Y (2021) Mobility prediction using a weighted Markov model based on mobile user classification. Sensors 21(5):1740

    Article  Google Scholar 

  18. Chen X, Zhang H, Hu Y, Liang J, Wang H (2023) Vnagt: Variational non-autoregressive graph transformer network for multi-agent trajectory prediction. IEEE Trans Vehic Technol

  19. Yang C, Pei Z (2023) Long-short term spatio-temporal aggregation for trajectory prediction. IEEE Trans Intell Transp Syst 24(4):4114–4126

    Article  Google Scholar 

  20. Sahadevan D, Ponnusamy P, Gopi VP, Nelli MK (2022) Ground-based 4d trajectory prediction using bi-directional lstm networks. Appl Intell 52(14):16417–16434

    Article  Google Scholar 

  21. Hasan F, Huang H (2023) Mals-net: A multi-head attention-based lstm sequence-to-sequence network for socio-temporal interaction modelling and trajectory prediction. Sensors 23(1):530

    Article  Google Scholar 

  22. Xu P, Hayet J-B, Karamouzas I (2023) Context-aware timewise vaes for real-time vehicle trajectory prediction. IEEE Robot Automat Lett

  23. Besse PC, Guillouet B, Loubes J-M, Royer F (2016) Review and perspective for distance-based clustering of vehicle trajectories. IEEE Trans Intell Transp Syst 17(11):3306–3317

    Article  Google Scholar 

  24. Choong MY, Angeline L, Chin RKY, Yeo KB, Teo KTK (2016) Vehicle trajectory clustering for traffic intersection surveillance. In: Proc. IEEE Int. Conf. Consum. Electron.-Asia. IEEE, p 1–4

  25. Liu LX, Song JT, Guan B, Wu ZX, He KJ (2012) Tra-dbscan: a algorithm of clustering trajectories. Appl Mech Mater 121:4875–4879

    Google Scholar 

  26. Kumar D, Wu H, Rajasegarar S, Leckie C, Krishnaswamy S, Palaniswami M (2018) Fast and scalable big data trajectory clustering for understanding urban mobility. IEEE Trans Intell Transp Syst 19(11):3709–3722

    Article  Google Scholar 

  27. Li X, Hu W, Hu W (2006) A coarse-to-fine strategy for vehicle motion trajectory clustering. In: Proc. 18th Int. Conf. Pattern Recognit., vol. 1. IEEE, p 591–594

  28. Nanni M, Pedreschi D (2006) Time-focused clustering of trajectories of moving objects. J Intell Inf Syst 27:267–289

    Article  Google Scholar 

  29. Vlachos M, Kollios G, Gunopulos D (2002) Discovering similar multidimensional trajectories. In: Proc. 18th Int. Conf. Data Eng. IEEE, p 673–684

  30. Sousa RSD, Boukerche A, Loureiro AA (2020) Vehicle trajectory similarity: models, methods, and applications. ACM Comput Surv 53(5):1–32

    Article  Google Scholar 

  31. Wang W, Xia F, Nie H, Chen Z, Gong Z, Kong X, Wei W (2020) Vehicle trajectory clustering based on dynamic representation learning of internet of vehicles. IEEE Trans Intell Transp Syst 22(6):3567–3576

    Article  Google Scholar 

  32. Ferraro MB, Giordani P (2020) Soft clustering. Wiley Interdisciplinary. Rev Comput Stat 12(1):1480

    Google Scholar 

  33. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Proc. Adv. Neural Inf. Process. Syst. 30:5998–6008

    Google Scholar 

  34. Zhang A, Zhang B, Bi W, Mao Z (2022) Attention based trajectory prediction method under the air combat environment. Appl Intell 52(15):17341–17355

    Article  Google Scholar 

  35. Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT press, Cambridge

    Google Scholar 

  36. Jiang Z, Zheng Y, Tan H, Tang B, Zhou H (2016) Variational deep embedding: An unsupervised and generative approach to clustering. arXiv:1611.05148

  37. Jiang Z, Zheng Y, Tan H, Tang B, Zhou H (2016) Variational deep embedding: A generative approach to clustering. CoRR. abs/1611.05148, p 1–8

  38. Cheng H, Liu M, Chen L, Broszio H, Sester M, Yang MY (2023) Gatraj: A graph-and attention-based multi-agent trajectory prediction model. ISPRS J Photogramm Remote Sens 205:163–175

    Article  Google Scholar 

  39. Westny T, Oskarsson J, Olofsson B, Frisk E (2023) Evaluation of differentially constrained motion models for graph-based trajectory prediction. In: 2023 IEEE Intelligent Vehicles Symposium (IV). IEEE, p 1–8

  40. Liang Y, Zhao Z (2021) Nettraj: A network-based vehicle trajectory prediction model with directional representation and spatiotemporal attention mechanisms. IEEE Trans Intell Transp Syst 23(9):14470–14481

    Article  Google Scholar 

  41. Guan L, Shi J, Wang D, Shao H, Chen Z, Chu D (2023) A trajectory prediction method based on bayonet importance encoding and bidirectional lstm. Expert Syst Appl 223:119888

  42. Jiang W, Luo J (2022) Graph neural network for traffic forecasting: A survey. Expert Syst Appl 207:117921

    Article  Google Scholar 

  43. Velickovic P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y, et al (2018) Graph attention networks. In: Proc. Int. Conf. Learn. Representations. p 1–12

  44. Salha G, Limnios S, Hennequin R, Tran V-A, Vazirgiannis M (2019) Gravity-inspired graph autoencoders for directed link prediction. In: Proc. 28th ACM Int. Conf. Inf. Knowl. Manage. p 589–598

  45. Moreira-Matias L, Gama J, Ferreira M, Mendes-Moreira J, Damas L (2013) Predicting taxi-passenger demand using streaming data. IEEE Trans Intell Transp Syst 14(3):1393–1402

  46. Liu H, Jin S, Yan Y, Tao Y, Lin H (2019) Visual analytics of taxi trajectory data via topical sub-trajectories. Vis Inform 3(3):140–149

Download references

Author information

Authors and Affiliations

Authors

Contributions

Shuo Zhao: Methodology, Software, Writing-Original draft. Zhaozhi Li: Software, Writing-Review Zikun Zhu: Software, Writing-Review. Charles Chang: Conceptualization, Methodology, Writing-Reveiw. Xin Li: Conceptualization, Methodology, Writing-Original draft, Review & Editing. Ying-Chi Chen: Conceptualization, Methodology, Writing-Review. Bo Yang: Conceptualization, Methodology, Writing-Review.

Corresponding author

Correspondence to Xin Li.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical and informed consent for data used

The authors state that this research complies with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Li, Z., Zhu, Z. et al. An integrated framework for accurate trajectory prediction based on deep learning. Appl Intell 54, 10161–10175 (2024). https://doi.org/10.1007/s10489-024-05724-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-024-05724-3

Keywords