Skip to main content

Advertisement

Dynamic interactive weighted feature selection using fuzzy interaction information

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Traditional information theory-based feature selection methods are designed for discrete features, which require additional discretization steps when working with continuous features. In contrast, fuzzy information theory-based feature selection methods can handle continuous features directly. However, most existing fuzzy information theory-based feature selection methods do not consider the dynamic interaction between candidate features and the already selected ones. To address this issue, we propose a dynamic weighted feature selection method based on fuzzy interaction information that can handle continuous features. First, we use fuzzy information theory metrics to characterize the concepts of feature relevance, redundancy, and interaction. Second, we define a fuzzy interaction weight factor that can quantify the redundancy and interaction between features by using fuzzy interaction information. Third, we design a novel feature selection algorithm called fuzzy dynamic interactive weighted feature selection (FDIWFS) by combining the fuzzy interaction weight factor with a sequential forward search strategy. To evaluate the effectiveness of FDIWFS, we compare it with eight state-of-the-art feature selection methods on fifteen publicly available datasets. The results of comparative experiments demonstrate that FDIWFS outperforms the other methods in terms of classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The data used in this article are publicly available online and have been cited in the paper.

References

  1. Abdelrazek M, Abd Elaziz M, El-Baz A (2024) CDMO: Chaotic dwarf mongoose optimization algorithm for feature selection. Sci Rep 14(1):701. https://doi.org/10.1038/s41598-023-50959-8

    Article  MATH  Google Scholar 

  2. Chen B, Zhang X, Yang J (2023) Feature selections based on three improved condition entropies and one new similarity degree in interval-valued decision systems. Eng Appl Artif Intell 126:107165. https://doi.org/10.1016/j.engappai.2023.107165

    Article  MATH  Google Scholar 

  3. Dai J, Chen J (2020) Feature selection via normative fuzzy information weight with application into tumor classification. Appl Soft Comput 92:106299. https://doi.org/10.1016/j.asoc.2020.106299

    Article  MATH  Google Scholar 

  4. Dai J, Xu Q (2013) Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification. Appl Soft Comput 13(1):211–221. https://doi.org/10.1016/j.asoc.2012.07.029

    Article  MATH  Google Scholar 

  5. Deng T, Huang Y, Yang G et al (2022) Pointwise mutual information sparsely embedded feature selection. Int J Approx Reason 151:251–270. https://doi.org/10.1016/j.ijar.2022.09.012

    Article  MathSciNet  MATH  Google Scholar 

  6. Dunn OJ (1961) Multiple comparisons among means. J Amer Statist Assoc 56(293):52–64. https://doi.org/10.1080/01621459.1961.10482090

    Article  MathSciNet  MATH  Google Scholar 

  7. Fleuret F (2004) Fast binary feature selection with conditional mutual information. J Mach Leran Res 5(4941):1531–1555

    MathSciNet  MATH  Google Scholar 

  8. Friedman M (1940) A comparison of alternative tests of significance for the problem of \(m\) rankings. Ann Math Stat 11(1):86–92. https://doi.org/10.1214/aoms/1177731944

    Article  MathSciNet  MATH  Google Scholar 

  9. Gu X, Guo J, Li C et al (2021) A feature selection algorithm based on redundancy analysis and interaction weight. Appl Intell 51(4):2672–2686. https://doi.org/10.1007/s10489-020-01936-5

    Article  MATH  Google Scholar 

  10. Gu X, Guo J, Xiao L et al (2022) Conditional mutual information-based feature selection algorithm for maximal relevance minimal redundancy. Appl Intell 52(2):1436–1447. https://doi.org/10.1007/s10489-021-02412-4

    Article  MATH  Google Scholar 

  11. Hu L, Gao W, Zhao K et al (2018) Feature selection considering two types of feature relevancy and feature interdependency. Expert Syst Appl 93:423–434. https://doi.org/10.1016/j.eswa.2017.10.016

    Article  MATH  Google Scholar 

  12. Hu Q, Yu D, Xie Z (2006) Information-preserving hybrid data reduction based on fuzzy-rough techniques. Pattern Recognit Lett 27(5):414–423. https://doi.org/10.1016/j.patrec.2005.09.004

    Article  MATH  Google Scholar 

  13. Iman RL, Davenport JM (1980) Approximations of the critical region of the fbietkan statistic. Comm Statist 9(6):571–595. https://doi.org/10.1080/03610928008827904

    Article  MATH  Google Scholar 

  14. John GH, Kohavi R, Pfleger K (1994) Irrelevant features and the subset selection problem. In: Machine learning proceedings 1994. Elsevier, pp 121–129. https://doi.org/10.1016/B978-1-55860-335-6.50023-4

  15. Khaire UM, Dhanalakshmi R (2019) Stability of feature selection algorithm: A review. J King Saud Univ - Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2019.06.012

    Article  MATH  Google Scholar 

  16. Kuncheva LI (2007) A stability index for feature selection. In: In Proceedings of the 25th IASTED International Multi-Conference on Artificial Intelligence and Applications, pp 390–395

  17. Li J, Cheng K, Wang S et al (2017) Feature selection: A data perspective. ACM Comput Surv 50(6):1–45. https://doi.org/10.1145/3136625

    Article  MATH  Google Scholar 

  18. Li Z (2021) A new feature selection using dynamic interaction. Pattern Anal Appl 24(1):203–215. https://doi.org/10.1007/s10044-020-00916-2

    Article  MATH  Google Scholar 

  19. Li Z (2022) A feature selection method using dynamic dependency and redundancy analysis. Arab J Sci Eng 47(8):10419–10433. https://doi.org/10.1007/s13369-022-06590-2

    Article  MATH  Google Scholar 

  20. Luo L, Yang J, Zhang X et al (2024) Tri-level attribute reduction based on neighborhood rough sets. Appl Intell 54(5):3786–3807. https://doi.org/10.1007/s10489-024-05361-w

    Article  MATH  Google Scholar 

  21. Ma XA, Ju C (2022) Fuzzy information-theoretic feature selection via relevance, redundancy, and complementarity criteria. Inform Sci 611:564–590. https://doi.org/10.1016/j.ins.2022.08.067

    Article  MATH  Google Scholar 

  22. Ma XA, Yao Y (2018) Three-way decision perspectives on class-specific attribute reducts. Inform Sci 450:227–245. https://doi.org/10.1016/j.ins.2018.03.049

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma XA, Zhao XR (2019) Cost-sensitive three-way class-specific attribute reduction. Int J Approx Reason 105:153–174. https://doi.org/10.1016/j.ijar.2018.11.014

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma XA, Xu H, Ju C (2023) Class-specific feature selection via maximal dynamic correlation change and minimal redundancy. Expert Syst Appl 229:120455. https://doi.org/10.1016/j.eswa.2023.120455

    Article  MATH  Google Scholar 

  25. Markelle Kelly KNRachel Longjohn (2024) The UCI machine learning repository. https://archive.ics.uci.edu

  26. Naik AK, Kuppili V (2022) Dynamic relevance and interdependent feature selection for continuous data. Expert Syst Appl 191:116302. https://doi.org/10.1016/j.eswa.2021.116302

    Article  MATH  Google Scholar 

  27. Pedregosa F, Varoquaux G, Gramfort A, et al (2011) Scikit-learn: Machine learning in python. J Mach Leran Res 12(85):2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html

  28. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238. https://doi.org/10.1109/tpami.2005.159

    Article  MATH  Google Scholar 

  29. Qu L, He J, Zhang G et al (2022) Entropy measure for a fuzzy relation and its application in attribute reduction for heterogeneous data. Appl Soft Comput 118:108455. https://doi.org/10.1016/j.asoc.2022.108455

    Article  MATH  Google Scholar 

  30. Ramey JA (2016) Datamicroarray: collection of data sets for classification https://github.com/ramhiser/datamicroarray

  31. Salem OA, Liu F, Chen YPP et al (2021) Feature selection and threshold method based on fuzzy joint mutual information. Int J Approx Reason 132:107–126. https://doi.org/10.1016/j.ijar.2021.01.003

    Article  MathSciNet  MATH  Google Scholar 

  32. Salem OA, Liu F, Chen YPP et al (2022) Fuzzy joint mutual information feature selection based on ideal vector. Expert Syst Appl 193:116453. https://doi.org/10.1016/j.eswa.2021.116453

    Article  MATH  Google Scholar 

  33. Sun L, Ma Y, Ding W et al (2024) LSFSR: Local label correlation-based sparse multilabel feature selection with feature redundancy. Inform Sci 667:120501. https://doi.org/10.1016/j.ins.2024.120501

  34. Sun X, Liu Y, Xu M et al (2013) Feature selection using dynamic weights for classification. Knowl-Based Syst 37:541–549. https://doi.org/10.1016/j.knosys.2012.10.001

    Article  MATH  Google Scholar 

  35. Wan J, Chen H, Li T et al (2021) Dynamic interaction feature selection based on fuzzy rough set. Inform Sci 581:891–911. https://doi.org/10.1016/j.ins.2021.10.026

    Article  MATH  Google Scholar 

  36. Wan J, Chen H, Li T et al (2022) R2CI: Information theoretic-guided feature selection with multiple correlations. Pattern Recognit 127:108603. https://doi.org/10.1016/j.patcog.2022.108603

    Article  Google Scholar 

  37. Wang C, Huang Y, Shao M et al (2019) Uncertainty measures for general fuzzy relations. Fuzzy Sets Syst 360:82–96. https://doi.org/10.1016/j.fss.2018.07.006

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang C, Qian Y, Ding W et al (2021) Feature selection with fuzzy-rough minimum classification error criterion. IEEE Trans Fuzzy Syst 30(8):2930–2942. https://doi.org/10.1109/TFUZZ.2021.3097811

    Article  MATH  Google Scholar 

  39. Wang C, Wang C, Qian Y, et al (2024) Feature selection based on weighted fuzzy rough sets. IEEE Trans Fuzzy Syst pp 1–11. https://doi.org/10.1109/TFUZZ.2024.3387571

  40. Wang Z, Chen H, Yuan Z et al (2022) Exploiting fuzzy rough mutual information for feature selection. Appl Soft Comput 131:109769. https://doi.org/10.1016/j.asoc.2022.109769

    Article  MATH  Google Scholar 

  41. Wollstadt P, Schmitt S, Wibral M (2023) A rigorous information-theoretic definition of redundancy and relevancy in feature selection based on (partial) information decomposition. J Mach Leran Res 24(131):1–44. http://jmlr.org/papers/v24/21-0482.html

  42. Xia D, Wang G, Zhang Q et al (2023) Interactive fuzzy knowledge distance-guided attribute reduction with three-way accelerator. Knowl-Based Syst 279:110943. https://doi.org/10.1016/j.knosys.2023.110943

    Article  MATH  Google Scholar 

  43. Xu J, Qu K, Sun Y et al (2023) Feature selection using self-information uncertainty measures in neighborhood information systems. Appl Intell 53(4):4524–4540. https://doi.org/10.1007/s10489-022-03760-5

    Article  MATH  Google Scholar 

  44. Yu D, An S, Hu Q (2011) Fuzzy mutual information based min-redundancy and max-relevance heterogeneous feature selection. Int J Comput Intell Syst 4(4):619–633. https://doi.org/10.1080/18756891.2011.9727817

    Article  MATH  Google Scholar 

  45. Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and redundancy. J Mach Leran Res 5:1205–1224

    MathSciNet  MATH  Google Scholar 

  46. Zaheer H, Rehman SU, Bashir M, et al (2024) A metaheuristic based filter-wrapper approach to feature selection for fake news detection. Multimed Tools Appl pp 1–30. https://doi.org/10.1007/s11042-024-18734-7

  47. Zeng Z, Zhang H, Zhang R et al (2015) A novel feature selection method considering feature interaction. Pattern Recognit 48(8):2656–2666. https://doi.org/10.1016/j.patcog.2015.02.025

    Article  MATH  Google Scholar 

  48. Zhang P, Gao W, Hu J et al (2021) A conditional-weight joint relevance metric for feature relevancy term. Eng Appl Artif Intell 106:104481. https://doi.org/10.1016/j.engappai.2021.104481

    Article  MATH  Google Scholar 

  49. Zhang X, Yao Y (2022) Tri-level attribute reduction in rough set theory. Expert Syst Appl 190:116187. https://doi.org/10.1016/j.eswa.2021.116187

    Article  MATH  Google Scholar 

  50. Zhao J, Wu D, Wu J et al (2024) Consistency approximation: Incremental feature selection based on fuzzy rough set theory. Pattern Recognit 155:110652. https://doi.org/10.1016/j.patcog.2024.110652

Download references

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LY21F020008, LQ22G020003, LZ21F020004, LZ22F020008), the Natural Science Foundation of Chongqing of China (Grant Nos. cstc2021jcyj-msxmX0654, CSTB2024NSCQ-LZX0034), the Fundamental Research Funds for the Provincial Universities of Zhejiang, China (Grant No. XT202311), the National Nature Science Foundation of China (Grant Nos. U22A20102, 61976187), and the Major Project of Digital and Cutting-edge Disciplines Construction, Zhejiang Gongshang University, China (Grant Nos. SZJ2022A002, SZJ2022B007).

Author information

Authors and Affiliations

Authors

Contributions

Xi-Ao Ma: Conceptualization, Methodology, Writing - original draft preparation, Writing - review and editing, Funding acquisition, Supervision; Hao Xu: Methodology, Software, Validation, Yi Liu: Conceptualization, Methodology, Writing - review and editing, Funding acquisition.

Corresponding author

Correspondence to Yi Liu.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In the published paper, the incorrect corresponding author was captured.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, XA., Xu, H. & Liu, Y. Dynamic interactive weighted feature selection using fuzzy interaction information. Appl Intell 55, 166 (2025). https://doi.org/10.1007/s10489-024-06026-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10489-024-06026-4

Keywords