Skip to main content

Advertisement

An Attention-BiLSTM network identification method for time-delay feedback nonlinear system

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper addresses the identification problem of feedback nonlinear system with time delay (FNTD). A data-driven identification method for the FNTD system based on bidirectional long short-term memory (BiLSTM) networks is proposed. First, considering the long input and output data sequence and the existence of bidirectional features, the BiLSTM network is chosen for identification. In addition, in order to mine the complex nonlinear mapping relationship between input and output, the attention mechanism is introduced into the BiLSTM algorithm to highlight the influence of key factors. The Gaussian kernel function selects the optimal complexity model to enhance the extrapolation performance, and further improves the identification accuracy. Then, the attention-BiLSTM algorithm is proposed. In the simulation, a numerical example and two application examples are implemented. The results show that the attention-BiLSTM method can effectively identify the FNTD system, and is superior to LSTM and BiLSTM in terms of identification accuracy and speed. The proposed attention-BiLSTM method has the highest identification accuracy, and the RMSE is \(5.57\%\) and \(1.05\%\) lower than the LSTM and BiLSTM models, respectively. The \(R^2\) value reaches 0.9997, which is \(16.17\%\) and \(0.77\%\) higher than LSTM and BiLSTM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability and access

The data used to support the results of this study are available from the corresponding author upon request.

References

  1. Lu Y, Tang YG, Zhang XG, Wang SE (2020) Parameter identification of fractional order systems with nonzero initial conditions based on block pulse functions. Measurement 158:107684

    Article  MATH  Google Scholar 

  2. Guan W, Dong LL, Zhou JM, Han Y, Zhou J (2019) Data-driven methods for operational modal parameters identification: A comparison and application. Measurement 132:238–251

    Article  MATH  Google Scholar 

  3. Yang CY, Bu LC, Chen B (2021) Energy modeling and online parameter identification for permanent magnet synchronous motor driven belt conveyors. Measurement 178:109342

    Article  MATH  Google Scholar 

  4. Guo J, Jia RZ, Su RN, Zhao YL (2023) Identification of FIR systems with Binary-Valued observations against data tampering attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems. https://doi.org/10.1109/TSMC.2023.3276352

  5. Li JH, Zong TC, Gu JP (2020) Parameter estimation of Wiener systems based on the particle swarm iteration and gradient search principle. Circ Syst Sig Process 39:3470–3495

    Article  MATH  Google Scholar 

  6. Li F, Jia L (2019) Parameter estimation of Hammerstein-Wiener nonlinear system with noise using special test signals. Neurocomputing 344:37–48

  7. Ding S, Wang Z, Zhang J, Fang H, Gu XC (2022) Time delay system identification using controlled recurrent neural network and discrete bayesian optimization. Appl Intell 52:8351–8371

    Article  MATH  Google Scholar 

  8. Kou J, Zhang W, Yin M (2016) Novel Wiener models with a time-delayed nonlinear block and their identification. Nonlinear Dyn 85:2389–2404

    Article  MATH  Google Scholar 

  9. Ma JX, Ding F, Xiong WL, Yang EF (2017) Combined state and parameter estimation for Hammerstein systems with time delay using the Kalman filtering. Int J Adapt Control Signal Process 31(8):1139–1151

    Article  MathSciNet  MATH  Google Scholar 

  10. Ma JX, Xiong WL, Chen J, Ding F (2017) Hierarchical identification for multivariate Hammerstein systems by using the modified Kalman filter. IET Control Theory Appl 11(6):857–869

    Article  MathSciNet  MATH  Google Scholar 

  11. Dong SJ, Yu L, Zhang WA, Chen B (2020) Robust extended recursive least squares identification algorithm for Hammerstein systems with dynamic disturbances. Digit Sig Process 101:102716

  12. Liu HX, Feng YX, Li JH, Luo JC (2022) Robust Petri net controllers for flexible manufacturing systems with multi-type and multi-unit unreliable resources. IEEE Transactions on System Man and Cybernetics. https://doi.org/10.1109/TSMC.2022.3201826

  13. Ding F, Liu XM, Hayat T (2020) Hierarchical least squares identification for feedback nonlinear equation-error systems. J Franklin Inst 357(5):2958–2977

    Article  MathSciNet  MATH  Google Scholar 

  14. Li JH, Ding F (2011) Maximum likelihood stochastic gradient estimation for Hammerstein systems with colored noise based on the key term separation technique. Comput Math Appl 62(11):4170–4177

    Article  MathSciNet  MATH  Google Scholar 

  15. Li JH, Zong TC, Lu GP (2022) Parameter identification of Hammerstein-Wiener nonlinear systems with unknown time delay based on the linear variable weight particle swarm optimization. ISA Trans 120:89–98

    Article  MATH  Google Scholar 

  16. Mete S, Ozer S, Zorlu H (2016) System identification using Hammerstein model optimized with differential evolution algorithm. Aeu-international J Electron Commun 70(12):1667–1675

    Article  MATH  Google Scholar 

  17. Cui T, Xu L, Ding F, Alsaedi A, Hayat T (2020) Maximum likelihood-based adaptive differential evolution identification algorithm for multivariable systems in the state-space form. Int J Adapt Control Signal Process 34(11):1658–1676

    Article  MathSciNet  MATH  Google Scholar 

  18. Ren G, Yang RH, Yang RY, Zhang P, Yang XZ, Xu CB, Hu BG, Zhang HT, Lu YS, Cai YN (2019) A parameter estimation method for fractional-order nonlinear systems based on improved whale optimization algorithm. Mod Phys Lett B 33(7)

  19. Ghosh S, Maka S (2011) Genetic algorithm based NARX model identification for evaluation of insulin sensitivity. Appl Soft Comput 11(1):221–226

    Article  MATH  Google Scholar 

  20. Lu YZ, Yan DP, Levy D (2015) Friction coefficient estimation in servo systems using neural dynamic programming inspired particle swarm search. Appl Intell 43:1–14

    Article  MATH  Google Scholar 

  21. Sun H, Luş H, Betti R (2013) Identification of structural models using a modified Artificial Bee Colony algorithm. Comput Struct 116:59–74

    Article  MATH  Google Scholar 

  22. Rahmani MR, Farrokhi M (2020) Fractional-order Hammerstein state-space modeling of nonlinear dynamic systems from input-output measurements. ISA Trans 96:177–184

    Article  MATH  Google Scholar 

  23. Chang WD (2022) Identification of nonlinear discrete systems using a new Hammerstein model with Volterra neural network. Soft Comput 26:6765–6775

    Article  MATH  Google Scholar 

  24. Mehmood A, Zameer A, Chaudhary NI (2020) Design of meta-heuristic computing paradigms for Hammerstein identification systems in electrically stimulated muscle models. Neural Comput Appl 32:12469–12497

  25. Li YR, Chen WX, Chen J, Chen X, Liang J, Du M (2019) Neural network based modeling and control of elbow joint motion under functional electrical stimulation. Neurocomputing 340:171–179

    Article  MATH  Google Scholar 

  26. Wang HY, Luo C, Wang XY (2019) Synchronization and identification of nonlinear systems by using a novel self-evolving interval type-2 fuzzy LSTM-neural network. Eng Appl Artif Intell 81:79–93

    Article  MATH  Google Scholar 

  27. Ren JC, Liu D, Wan Y (2021) Modeling and application of Czochralski silicon single crystal growth process using hybrid model of data-driven and mechanism-based methodologies. J Process Control 104:74–85

    Article  MATH  Google Scholar 

  28. An H, Zhang S, Cui C (2022) Dynamic model identification for adaptive polishing system. Int J Control Autom Syst 20:3110–3120

    Article  MATH  Google Scholar 

  29. Xu ZC, Zhang BL, Li DF, Yip WS, To S (2024) Digital-twin-driven intelligent tracking error compensation of ultra-precision machining. Mech Syst Signal Process 219:111630

    Article  Google Scholar 

  30. Zhang CY, Zhang WD, Ying GG, Ying LQ, Hu JL, Chen WM (2024) A deep learning method for heavy vehicle load identification using structural dynamic response. Comput Struct 297:107341

  31. Sun J, Shi W, Yang Z, Yang J, Gui G (2019) Behavioral Modeling and Linearization of Wideband RF Power Amplifiers Using BiLSTM Networks for 5G Wireless Systems. IEEE Trans Veh Technol 68(11):10348–10356

    Article  MATH  Google Scholar 

  32. Astroza R, Ebrahimian H, Li Y, Conte JP (2017) Bayesian nonlinear structural FE model and seismic input identification for damage assessment of civil structures. Mech Syst Signal Process 93:661–687

    Article  Google Scholar 

  33. Ding ZH, Yu Y, Xia Y (2023) Nonlinear hysteretic parameter identification using an attention-based long short-term memory network and principal component analysis. 111:4559–4576

    Google Scholar 

  34. Abbasimehr H, Paki R (2022) Improving time series forecasting using LSTM and attention models. J Ambient Intell Human Comput 13:673–691

    Article  Google Scholar 

  35. Lin MQ, Wu J, Meng JH, Wang W, Wu J (2023) State of health estimation with attentional long short-term memory network for lithium-ion batteries. Energy 268:126706

    Article  MATH  Google Scholar 

  36. Su LY, Xiong L, Yang JL (2023) Multi-Attn BLS: Multi-head attention mechanism with broad learning system for chaotic time series prediction. Appl Soft Comput 132:109831

    Article  MATH  Google Scholar 

  37. Chemali E, Kollmeyer PJ, Preindl M, Ahmed R, Emadi A (2018) Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries. IEEE Trans Ind Electron 65:6730–6739

  38. Alkadi O, Moustafa N, Turnbull B, Choo KKR (2021) A deep blockchain framework-enabled collaborative intrusion detection for protecting IoT and cloud networks. IEEE Internet Things J 8:9463–9472

    Article  Google Scholar 

  39. Yao H, Liu C, Zhang P, Wu S, Jiang C, Yu S (2022) Identification of encrypted traffic through attention mechanism based long short term memory. IEEE Trans on Big Data 8:241–252

    Article  MATH  Google Scholar 

  40. Zhang J, Zhang K, An Y, Luo H, Yin S (2024) An integrated multitasking intelligent bearing fault diagnosis scheme based on representation learning under imbalanced sample condition. IEEE Trans Neural Netw Learn Syst 35:6231–6242

    Article  MATH  Google Scholar 

  41. Dong Z, Ji X, Wang J, Gu Y, Wang J, Qi D (2024) ICNCS: Internal cascaded neuromorphic computing system for fast electric vehicle state-of-charge estimation. IEEE Trans Consum Electron 70:4311–4320

    Article  MATH  Google Scholar 

  42. Yang GC, Yao JY (2020) High-precision motion servo control of double-rod electro-hydraulic actuators with exact tracking performance. ISA Trans 103:266–279

  43. Ruffa F, De Capua C, Morello R, Liu ZZ (2019) Temperature sensing and evaluation of thermal effects on battery packs for automotive applications. IEEE Sensors J 19:11634–11645

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China (61973176,61973178,U2066203).

Author information

Authors and Affiliations

Authors

Contributions

Jun Yan: Data curation, Writing - original draft, Visualization, Investigation. Junhong Li: Conceptualization, Methodology, Software, Funding acquisition. Guixiang Bai: Software, Validation. Yanan Li: Writing - review & editing.

Corresponding author

Correspondence to Junhong Li.

Ethics declarations

Ethical and informed consent for data used

The data used in this paper conform to ethical and informed conset.

Conflicts of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Li, J., Bai, G. et al. An Attention-BiLSTM network identification method for time-delay feedback nonlinear system. Appl Intell 55, 29 (2025). https://doi.org/10.1007/s10489-024-06067-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10489-024-06067-9

Keywords