Skip to main content

Advertisement

Application of switching-input LSTM network for vessel trajectory prediction

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Due to the rapid economic development of modern society, the demand for cargo in the shipping industry has experienced unprecedented growth in recent years. The introduction of a large number of ships, especially large, new, and intelligent ships, has made shipping networks more complex. Controlling transportation risks has become more challenging than ever before. Ship trajectory prediction based on automatic identification system (AIS) data can effectively help identify abnormal ship behaviors and reduce maritime risks such as collisions, grounding, and contacts. In recent years, with the rapid development of deep learning theories, recurrent neural network models (long short-term memory and gated recurrent unit) have been widely used in ship trajectory prediction due to their powerful ability to capture hidden information in time-series data. However, these models struggle with tasks involving high complexity of trajectory features. To address this issue, this paper introduces a switching-input mechanism based on LSTM, constructing a ship trajectory prediction model based on the SI-LSTM model. The switching-input mechanism enables the model to adjust its processing of important information according to dynamic changes in input data, effectively capturing local features of complex trajectories. The experimental section, which includes eight cases of complex trajectories, demonstrates the competitive generalization ability and prediction accuracy of SI-LSTM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data and code of Switching-input LSTM Network can be found at https://github.com/1101Floor/SI-LSTM.

References

  1. Zhang X, Fu X, Xiao Z et al (2023) Vessel trajectory prediction in Maritime Transportation: current approaches and Beyond. IEEE Trans Intell Transp Syst 23(11):19980–19998. https://doi.org/10.1109/TITS.2022.3192574

    Article  MATH  Google Scholar 

  2. Liu RW, Hu K, Liang M et al (2023) QSD-LSTM: Vessel trajectory prediction using long short-term memory with quaternion ship domain. Appl Ocean Res 136:103592. https://doi.org/10.1016/j.apor.2023.103592

    Article  Google Scholar 

  3. Zhi L, Zuo Y (2024) Collaborative path planning of multiple AUVs based on adaptive Multi-population PSO. J Mar Sci Eng 12(2):223. https://doi.org/10.3390/jmse12020223

    Article  MATH  Google Scholar 

  4. Li HH, Yang Z (2023) Towards safe navigation environment: the imminent role of spatio-temporal pattern mining in maritime piracy incidents analysis. Reliab Eng Syst Saf 238:109422. https://doi.org/10.1016/j.ress.2023.109422

    Article  Google Scholar 

  5. Cai M, Zhang J, Zhang D et al (2021) Collision risk analysis on ferry ships in Jiangsu Section of the Yangtze River based on AIS data. Reliab Eng Syst Saf 215:107901. https://doi.org/10.1016/j.ress.2021.107901

    Article  MATH  Google Scholar 

  6. Bakdi A, Glad IK, Vanem E (2020) AIS-Based multiple vessel collision and grounding risk identification based on Adaptive Safety Domain. J Mar Sci Eng 8(1):5. https://doi.org/10.3390/jmse8010005

    Article  Google Scholar 

  7. Mou JM, Tak Cvd, Ligteringen H (2010) Study on collision avoidance in busy waterways by using AIS data. Ocean Eng 37(5):483–490. https://doi.org/10.1016/j.oceaneng.2010.01.012

    Article  MATH  Google Scholar 

  8. Jiang JH, Zuo Y (2024) STIA-DJANet: spatial–temporal intention-aware vessel trajectory prediction based on dual-joint attention network for e-navigation. Expert Syst Appl 262:125550. https://doi.org/10.1016/j.eswa.2024.125550

    Article  Google Scholar 

  9. Li HH, Yang Z (2023) Incorporation of AIS data-based machine learning into unsupervised route planning for maritime autonomous surface ships. Transp Res E 176:103171. https://doi.org/10.1016/j.tre.2023.103171

    Article  MATH  Google Scholar 

  10. Xiao Z, Fu X, Zhang L (2022) Big data driven vessel trajectory and navigating state prediction with adaptive learning, motion modeling and particle filtering techniques. IEEE Trans Intell Transp Syst 23(4):3696–3709. https://doi.org/10.1109/TITS.2020.3040268

    Article  MATH  Google Scholar 

  11. Jiang J, Zuo Y, Xiao Y et al (2024) STMGF-Net: a spatiotemporal multi-graph fusion network for vessel trajectory forecasting in intelligent maritime navigation. IEEE Trans Intell Transp Syst 1–13. https://doi.org/10.1109/TITS.2024.3465234

  12. Chen X, Ling J, Yang Y (2020) Math Probl Eng. https://doi.org/10.1155/2020/7191296. Ship Trajectory Reconstruction from AIS Sensory Data via Data Quality Control and Prediction

  13. Tang H, Yin Y, Shen H (2019) A model for vessel trajectory prediction based on long short-term memory neural network. J Mar Eng Technol 21:136–145. https://doi.org/10.1080/20464177.2019.1665258

    Article  MATH  Google Scholar 

  14. Ma X, Tao Z, Wang Y (2015) Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp Res Part C: Emerg Technol 54:187–197. https://doi.org/10.1016/j.trc.2015.03.014

    Article  MATH  Google Scholar 

  15. Abebe M, Noh Y, Kang YJ (2022) Ship trajectory planning for collision avoidance using hybrid ARIMA-LSTM models. Ocean Eng 256:111527. https://doi.org/10.1016/j.oceaneng.2022.111527

    Article  MATH  Google Scholar 

  16. Zhang K, Huang L, He Y (2023) A real-time multi-ship collision avoidance decision-making system for autonomous ships considering ship motion uncertainty. Ocean Eng 278:114205. https://doi.org/10.1016/j.oceaneng.2023.114205

    Article  Google Scholar 

  17. Ding M, Su W, Liu Y (2020) A Novel Approach on Vessel Trajectory Prediction Based on Variational LSTM. In: ICAICA, Dalian, China, June 27–29, 2020, pp. 206–211

  18. Dey RK, Das AK (2023) Modified term frequency-inverse document frequency based deep hybrid framework for sentiment analysis. Multimedia Tools Appl 82(32):32967–32990. https://doi.org/10.1007/s11042-023-14653-1

    Article  MATH  Google Scholar 

  19. Li X, Ma Y, Zhu JJ (2021) An online dual filters RUL prediction method of lithium-ion battery based on unscented particle filter and least squares support vector machine. Measurement 184:109935. https://doi.org/10.1016/j.measurement.2021.109935

    Article  MATH  Google Scholar 

  20. Lipton Z, Berkowitz J, Elkan C (2015) A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019

  21. Mohammadi M, Talebpour F, Safaee E et al (2018) Small-scale building load forecast based on hybrid forecast engine. Neural Process Lett 48(1):329–351. https://doi.org/10.1007/s11063-017-9723-2

    Article  Google Scholar 

  22. Slaughter I, Charla JL, Siderius M (2024) Vessel trajectory prediction with recurrent neural networks: an evaluation of datasets, features, and architectures. J Ocean Eng Sci 8(39):1–10. https://doi.org/10.1016/j.joes.2024.01.002

    Article  MATH  Google Scholar 

  23. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Cornputation 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  MATH  Google Scholar 

  24. Felix A, Schmidhuber J, Cummins F (2000) Learning to forget: continual prediction with LSTM. Neural Cornputation 12(10):2451–2471. https://doi.org/10.1049/cp:19991218

    Article  MATH  Google Scholar 

  25. Dey RK, Das AK (2024) Neighbour adjusted dispersive flies optimization based deep hybrid sentiment analysis framework. Multimedia Tools Appl 83(3):64393–64416. https://doi.org/10.1007/s11042-023-17953-8

    Article  MATH  Google Scholar 

  26. Xiao Z, Xu X, Xing H (2021) RTFN: a robust temporal feature network for time series classification. Inf Sci 571:65–86. https://doi.org/10.1016/j.ins.2021.04.053

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu F, Zhou X, Cao J (2022) Anomaly Detection in Quasi-periodic Time Series based on Automatic Data Segmentation and Attentional LSTM-CNN. IEEE Trans Knowl Data Eng 34(6):2626–2640. https://doi.org/10.1109/TKDE.2020.3014806

    Article  MATH  Google Scholar 

  28. Wang Z, Liu N, Chen C et al (2023) Adaptive self-attention LSTM for RUL prediction of lithium-ion batteries. Inf Sci 635:398–413. https://doi.org/10.1016/j.ins.2023.01.100

    Article  MATH  Google Scholar 

  29. Zhang X, Liu J, Gong P (2023) Trajectory prediction of seagoing ships in dynamic traffic scenes via a gated spatio-temporal graph aggregation network. Ocean Eng 287:115886. https://doi.org/10.1016/j.oceaneng.2023.115886

    Article  MATH  Google Scholar 

  30. Chung J, Gülçehre Ç, Cho K (2014) Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv preprint arXiv:1412.3555

  31. Bao KX, Bi JQ, Gao M et al (2022) An Improved Ship Trajectory Prediction based on AIS Data using MHA-BiGRU. J Mar Sci Eng 10:2077–1312. https://doi.org/10.3390/jmse10060804

    Article  MATH  Google Scholar 

  32. Li HH, Jiao H, Yang ZL et al (2023) AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods. Transp Res E 175:103152. https://doi.org/10.1016/j.tre.2023.103152

    Article  Google Scholar 

  33. Xue HQ, Wang S, Xia ML et al (2024) G-Trans: a hierarchical approach to vessel trajectory prediction with GRU-based transformer. Ocean Eng 300:117431. https://doi.org/10.1016/j.oceaneng.2024.117431

    Article  MATH  Google Scholar 

  34. Venskus J, Treigys P, Markeviuciute J (2021) Unsupervised marine vessel trajectory prediction using LSTM network and wild bootstrapping techniques. Nonlinear Analysis: Modelling Control 26:718–737. https://doi.org/10.15388/namc.2021.26.23056

    Article  Google Scholar 

  35. Last P, Bahlke C, Hering-Bertram M et al (2014) Comprehensive analysis of automatic identification system (AIS) data in regard to vessel movement prediction. J Navig 67(5):791–809. https://doi.org/10.1017/S0373463314000253

    Article  MATH  Google Scholar 

  36. Zhang D, Jia L, Wu Q Enhance the AIS data availability by screening and interpolation. In: 2017 4th International Conference on Transportation Information and Safety, Banff, AB, Canada et al (2017) August 08–10, 2017, https://doi.org/10.1109/ICTIS.2017.8047888

  37. Hu HB, Zheng X, Yin J (2021) Research on O-ring dimension measurement Algorithm based on cubic spline interpolation. Appl Sci 11(8):3716. https://doi.org/10.3390/app11083716

    Article  MATH  Google Scholar 

  38. Li H, Jiao H, Yang Z (2023) Ship trajectory prediction based on machine learning and deep learning: a systematic review and methods analysis. Eng Appl Artif Intell 126:107062. https://doi.org/10.1016/j.engappai.2023.107062

    Article  MATH  Google Scholar 

  39. Xiao Z, Xing H, Qu R et al (2024) Densely Knowledge-Aware Network for Multivariate Time Series classification. IEEE Trans Syst Man Cybernetics: Syst 54(4):2192–2204. https://doi.org/10.1109/TSMC.2023.3342640

    Article  MATH  Google Scholar 

  40. Xiao Z, Xu X, Xing H et al (2024) DTCM: Deep Transformer Capsule Mutual Distillation for Multivariate Time Series classification. IEEE Trans Cogn Dev Syst 16(4):1445–1459. https://doi.org/10.1109/TCDS.2024.3370219

    Article  MATH  Google Scholar 

  41. Xu ZH, Lv ZQ, Chu BJ et al (2024) A fast matrix autoregression algorithm based on Tucker decomposition for online prediction of nonlinear real-time taxi-hailing demand without pre-training. Chaos Solitons Fractals 189:115660. https://doi.org/10.1016/j.chaos.2024.115660

    Article  MathSciNet  MATH  Google Scholar 

  42. Li BY, Yang YH, Zhao ZY et al (2024) A Novel Ensemble Learning Approach for Intelligent Logistics demand management. J Internet Technol 25(4):507–515. https://doi.org/10.70003/160792642024072504002

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (grant nos. 52131101, 51939001) and the Science and Technology Fund for Distinguished Young Scholars of Dalian (grant no. 2021RJ08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuo Yi.

Ethics declarations

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Yi, Z., Zhao, L. et al. Application of switching-input LSTM network for vessel trajectory prediction. Appl Intell 55, 289 (2025). https://doi.org/10.1007/s10489-024-06079-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10489-024-06079-5

Keywords