Skip to main content

Advertisement

Graph-based multi-label feature selection with dynamic graph constraints and latent representation learning

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Currently, multi-label feature selection with joint manifold learning and linear mapping has received much attention. However, the low-quality graph matrix used by existing methods leads to model limitations. Traditional linear mapping cannot learn the coupling relationship between different outputs. In addition, existing approaches ignore latent supervisory information in label correlation. To this end, we obtain a dynamic graph matrix with Laplace rank constraints by the \(L_{1}\) norm with a conventional graph matrix. We also mine more reliable supervised information from label correlations by introducing latent representation learning. Moreover, we integrate all the above terms into a linear mapping learning framework based on improved matrix decomposition, and design a simple and effective scheme based on alternating iterations to optimize this framework. Numerous experimental results validate the competitive advantage of the proposed method over existing state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The data that support the findings of this study are openly available in Mulan Library at http://mulan.sourceforge.net/ datasets.html.

Notes

  1. http://mulan.sourceforge.net/dataset-mlc.html

References

  1. Khalid S, Khalil T, Nasreen S (2014) A survey of feature selection and feature extraction techniques in machine learning[C]// In: Proceedings of the 2014 science and information conference, IEEE, pp 372–378

  2. Komeili M, Louis W, Armanfard N et al (2017) Feature selection for nonstationary data: application to human recognition using medical biometrics[J]. IEEE Trans Cybern 48(5):1446–1459

    Article  MATH  Google Scholar 

  3. Janet JP, Kulik HJ (2017) Resolving transition metal chemical space: feature selection for machine learning and structure Cproperty relationships[J]. J Phys Chem A 121(46):8939–8954

  4. Bermingham ML, Pong-Wong R, Spiliopoulou A et al (2015) Application of high-dimensional feature selection: Evaluation for genomic prediction in man[J]. Sci Rep 5(1):10312

    Article  MATH  Google Scholar 

  5. Sun X, Liu Y, Li J et al (2012) Using cooperative game theory to optimize the feature selection problem[J]. Neurocomputing 97:86–93

    Article  MATH  Google Scholar 

  6. Zhang Y, Ma YC, Yang XF (2022) Multi-label feature selection based on logistic regression and manifold learning[J]. Appl Intell 52:9256–9273

    Article  MATH  Google Scholar 

  7. Shi JB, Malik J (2000) Normalized cuts and image segmentation[J]. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  MATH  Google Scholar 

  8. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding[J]. Science 290(5500):2323–2326

    Article  MATH  Google Scholar 

  9. Kawano S (2013) Semi-supervised logistic discrimination via labeled data and unlabeled data from different sampling distributions[J]. Statistical Analysis and Data Mining: The ASA Data Science Journal 6(6):472–481

    Article  MathSciNet  MATH  Google Scholar 

  10. Kawano S, Misumi T, Konishi S (2012) Semi-supervised logistic discrimination via graph-based regularization[J]. Neural Process Lett 36:203–216

    Article  MATH  Google Scholar 

  11. Zhang ML, Zhou ZH (2014) A review on multi-label learning algorithms[J]. IEEE Trans Knowl Data Eng 26(8):1819–1837

    Article  MATH  Google Scholar 

  12. Boutell MR, Luo J, Shen X et al (2004) Learning multi-label scene classification[J]. Pattern Recogn 37(9):1757–1771

    Article  MATH  Google Scholar 

  13. Huang J, Li G, Huang Q et al (2015) Learning label specific features for multi-label classification[C]// In: Proceedings of the 2015 IEEE International Conference on Data Mining, IEEE, pp 181–190

  14. Zhang J, Luo ZM, Li CD et al (2019) Manifold regularized discriminative feature selection for multi-label learning[J]. Pattern Recogn 95:136–150

    Article  MATH  Google Scholar 

  15. Hu J, Li YH, Gao WF et al (2020) Robust multi-label feature selection with dual-graph regularization[J]. Knowl-Based Syst 203:106126

    Article  MATH  Google Scholar 

  16. Li YH, Hu L, Gao WF (2023) Multi-label feature selection via robust flexible sparse regularization[J]. Pattern Recogn 134:109074

    Article  MATH  Google Scholar 

  17. Han JQ, Sun ZY, Hao HW (2015) Selecting feature subset with sparsity and low redundancy for unsupervised learning[J]. Knowl-Based Syst 86:210–223

    Article  MATH  Google Scholar 

  18. Cai ZL, Zhu W (2018) Multi-label feature selection via feature manifold learning and sparsity regularization[J]. Int J Mach Learn Cybern 9:1321–1334

    Article  MATH  Google Scholar 

  19. Gao WF, Li YH, Hu L (2023) Multi-label feature selection with constrained latent structure shared term[J]. IEEE Trans Neural Netw Learn Syst 34(3):1253–1262

    Article  MATH  Google Scholar 

  20. Li YH, Hu L, Gao WF (2022) Label correlations variation for robust multi-label feature selection[J]. Inf Sci 609:1075–1097

    Article  MATH  Google Scholar 

  21. Huang R, Wu ZJ (2021) Multi-label feature selection via manifold regularization and dependence maximization[J]. Pattern Recogn 120:108149

    Article  MATH  Google Scholar 

  22. Hu JC, Li YH, Xu GC et al (2022) Dynamic subspace dual-graph regularized multi-label feature selection[J]. Neurocomputing 467:184–196

    Article  MATH  Google Scholar 

  23. Zhang Y, Ma YC (2022) Non-negative multi-label feature selection with dynamic graph constraints[J]. Knowl-Based Syst 238:107924

    Article  MATH  Google Scholar 

  24. Zhang Y, Ma YC (2023) Sparse multi-label feature selection via dynamic graph manifold regularization[J]. Int J Mach Learn Cybern 14(3):1021–1036

    Article  MATH  Google Scholar 

  25. Li YH, Hu L, Gao WF (2023) Robust sparse and low-redundancy multi-label feature selection with dynamic local and global structure preservation[J]. Pattern Recogn 134:109120

    Article  MATH  Google Scholar 

  26. Zhang Y, Huo W, Tang J (2024) Multi-label feature selection via latent representation learning and dynamic graph constraints[J]. Pattern Recogn 151:110411

    Article  MATH  Google Scholar 

  27. Lin YJ, Hu QH, Liu JH et al (2015) Multi-label feature selection based on max-dependency and min-redundancy[J]. Neurocomputing 168:92–103

    Article  MATH  Google Scholar 

  28. Lee J, Kim DW (2017) SCLS: Multi-label feature selection based on scalable criterion for large label set[J]. Pattern Recogn 66:342–352

    Article  MathSciNet  MATH  Google Scholar 

  29. Hashemi A, Dowlatshahi MB, Nezamabadi-Pour H (2020) MFS-MCDM: Multi-label feature selection using multi-criteria decision making[J]. Knowl-Based Syst 206:106365

    Article  MATH  Google Scholar 

  30. Zou Y, Hu X, Li P (2024) Gradient-based multi-label feature selection considering three-way variable interaction[J]. Pattern Recogn 145:109900

    Article  MATH  Google Scholar 

  31. Xu W, Gong Y (2004) Document clustering by concept factorization[C]// In: Proceedings of the 27th annual international acm sigir conference on research and development in information retrieval, pp 202–209

  32. Nie FP, Wang XQ, Jordan M et al (2016) The constrained laplacian rank algorithm for graph-based clustering[C]// In: Proceedings of the AAAI conference on artificial intelligence, 30(1):1969–1976

  33. Fan K (1949) On a theorem of Weyl concerning eigenvalues of linear transformations I[J]. Proc Natl Acad Sci 35(11):652–655

    Article  MathSciNet  MATH  Google Scholar 

  34. Tang C, Bian M, Liu XW et al (2019) Unsupervised feature selection via latent representation learning and manifold regularization[J]. Neural Netw 117:163–178

    Article  MATH  Google Scholar 

  35. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization[J]. Nature 401(6755):788–791

    Article  MATH  Google Scholar 

  36. Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization[C]// In: Proceeding of the 15th conference on neural information processing systems, Vancouver, Canada, pp 556–562

  37. Ding C, Li T, Jordan MI (2010) Convex and semi-nonnegative matrix factorizations[J]. IEEE Trans Pattern Anal Mach Intell 32:45–55

    Article  MATH  Google Scholar 

  38. Zhang ML, Zhou ZH (2007) ML-KNN: A lazy learning approach to multi-label learning[J]. Pattern Recogn 40(7):2038–2048

    Article  MATH  Google Scholar 

  39. Xue GT, Zhong M, Li JX et al (2022) Dynamic network embedding survey[J]. Neurocomputing 472:212–223

    Article  MATH  Google Scholar 

  40. Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings[J]. Ann Math Stat 11(1):86–92

    Article  MathSciNet  MATH  Google Scholar 

  41. Dunn OJ (1961) Multiple comparisons among means[J]. Publ Am Stat Assoc 56(293):52–64

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, (Grant No. 1220230).

Author information

Authors and Affiliations

Authors

Contributions

Jianxia Bai: Writing-Original draft, Methodology, Conceptualization. Yanhong Wu: Methodology, Writing-review and editing.

Corresponding author

Correspondence to Jianxia Bai.

Ethics declarations

Competing Interests

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Ethical and informed consent for data used

The data that support the findings of this study are openly available in Mulan Library at http://mulan.sourceforge.net/ datasets.html.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Wu, Y. Graph-based multi-label feature selection with dynamic graph constraints and latent representation learning. Appl Intell 55, 190 (2025). https://doi.org/10.1007/s10489-024-06116-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10489-024-06116-3

Keywords