Skip to main content

Advertisement

Efficient convolutional dual-attention transformer for automatic modulation recognition

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Automatic modulation recognition (AMR) involves identifying the modulation of electromagnetic signals in a noncollaborative manner. Deep learning-based methods have become a focused research topic in the AMR field. Such models are frequently trained using standardized data, relying on many computational and storage resources. However, in real-world applications, the finite resources of edge devices limit the deployment of large-scale models. In addition, traditional networks cannot handle real-world signals of varying lengths and local missing data. Thus, we propose a network structure based on a convolutional Transformer with a dual-attention mechanism. This proposed structure effectively utilizes the inductive bias of the lightweight convolution and the global property of the Transformer model, thereby fusing local features with global features to get high recognition accuracy. Moreover, the model can adapt to the length of the input signals while maintaining strong robustness against incomplete signals. Experimental results on the open-source datasets RML2016.10a, RML2016.10b, and RML2018.01a demonstrate that the proposed network structure can achieve 95.05%, 94.79%, and 98.14% accuracy, respectively, with enhancement training and maintain greater than 90% accuracy when the signals are incomplete. In addition, the proposed network structure has fewer parameters and lower computational cost than benchmark methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The datasets used in this study are all open source and available at DeepSig.

Materials Availability

Not applicable.

Code Availability

Available when necessary.

References

  1. Zhang X, Chen X, Wang Y, Gui G, Adebisi B, Sari H, Adachi F (2023) Lightweight automatic modulation classification via progressive differentiable architecture search. IEEE Trans Cogn Commun Netw 9(6):1519–1530

    Article  Google Scholar 

  2. Zhang F, Luo C, Xu J et al (2022) Deep learning based automatic modulation recognition: Models, datasets, and challenges. Digit Signal Prog 129:103650

  3. Zhu Z, Nandi AK (2015) Automatic modulation classification: principles, algorithms and applications. John Wiley & Sons

    MATH  Google Scholar 

  4. Dobre OA, Abdi A, Bar-Ness Y et al (2007) Survey of automatic modulation classification techniques: classical approaches and new trends. IET Commun 1(2):137–156

    Article  MATH  Google Scholar 

  5. Wei W, Mendel JM (2000) Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Trans Commun 48(2):189–193

    Article  MATH  Google Scholar 

  6. Polydoros A, Kim K (1990) On the detection and classification of quadrature digital modulations in broad-band noise. IEEE Trans Commun 38(8):1199–1211

    Article  MATH  Google Scholar 

  7. Park CS, Jang W, Nah SP, et al (2007) Automatic modulation recognition using support vector machine in software radio applications. In: Proc IEEE 9th Int Conf Adv Commun Technol (ICACT), pp 9–12

  8. Wu HC, Saquib M, Yun Z (2008) Novel automatic modulation classification using cumulant features for communications via multipath channels. IEEE Trans Wirel Commun 7(8):3098–3105

    Article  MATH  Google Scholar 

  9. Lopatka J, Pedzisz M (2000) Automatic modulation classification using statistical moments and a fuzzy classifier. In: Proc IEEE 5th Int Conf Signal Process (ICSP), pp 1500–1506

  10. Amodei D, Ananthanarayanan S, Anubhai R, et al (2016) Deep speech 2: End-to-end speech recognition in english and mandarin. In: Proc PMLR 5th Int Conf Mach Learn (ICML), pp 173–182

  11. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  MathSciNet  MATH  Google Scholar 

  12. O’Shea TJ, Corgan J, Clancy TC (2016) Convolutional radio modulation recognition networks. In: Proc Springer 17th Eng Appl Neural Netw (EANN), pp 213–226

  13. O’shea TJ, West N (2016) Radio machine learning dataset generation with gnu radio. In: Proc GNU Conf

  14. Chen Z, Cui H, Xiang J et al (2021) Signet: A novel deep learning framework for radio signal classification. IEEE Trans Cogn Commun Netw 8(2):529–541

    Article  MATH  Google Scholar 

  15. Tekbıyık K, Ekti AR, Görçin A, et al (2020) Robust and fast automatic modulation classification with cnn under multipath fading channels. In: Proc IEEE 91st Veh Technol Conf (VTCSpring), pp 1–6

  16. Xu J, Luo C, Parr G et al (2020) A spatiotemporal multi-channel learning framework for automatic modulation recognition. IEEE Wirel Commun Lett 9(10):1629–1632

    Article  MATH  Google Scholar 

  17. Fran C, et al (2017) Xception: Deep learning with depth wise separable convolutions. In: Proc IEEE/CVF Conf Comput Vis Pattern Recog (CVPR), pp 1251–1258

  18. Howard AG, Zhu M, Chen B, et al (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861

  19. Li J, Wen Y, He L (2023) Scconv: Spatial and channel reconstruction convolution for feature redundancy. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 6153–6162

  20. Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Adv Neural Inf Process Syst (NIPS) 30

  21. Devlin J, Chang MW, Lee K, et al (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805

  22. Dosovitskiy A, Beyer L, Kolesnikov A, et al (2020) An image is worth 16x16 words: Trans Image Recogn Scale. arXiv:2010.11929

  23. Wu H, Xiao B, Codella N, et al (2021) Cvt: Introducing convolutions to vision transformers. In: Proc IEEE/CVF Int Conf Comput Vis (ICCV), pp 22–31

  24. Su H, Fan X, Liu H (2022) Robust and efficient modulation recognition with pyramid signal transformer. In: Proc IEEE Global Commun Conf, pp 1868–1874

  25. Kumar Y, Sheoran M, Jajoo G et al (2020) Automatic modulation classification based on constellation density using deep learning. IEEE Commun Lett 24(6):1275–1278

    Article  MATH  Google Scholar 

  26. Ke Z, Vikalo H (2021) Real-time radio technology and modulation classification via an lstm auto-encoder. IEEE Trans Wirel Commun 21(1):370–382

    Article  MATH  Google Scholar 

  27. Rajendran S, Meert W, Giustiniano D et al (2018) Deep learning models for wireless signal classification with distributed low-cost spectrum sensors. IEEE Trans Cogn Commun Netw 4(3):433–445

    Article  MATH  Google Scholar 

  28. Hong D, Zhang Z, Xu X (2017) Automatic modulation classification using recurrent neural networks. In: Proc IEEE 3rd Int Conf Comput Commun (ICCC), pp 695–700

  29. West NE, O’shea T (2017) Deep architectures for modulation recognition. In: Proc IEEE Int Symp Dyn Spectr Access Netw (DySPAN), pp 1–6

  30. Xu J, Luo C, Parr G et al (2020) A spatiotemporal multi-channel learning framework for automatic modulation recognition. IEEE Wirel Commun Lett 9(10):1629–1632

    Article  MATH  Google Scholar 

  31. Zhang F, Luo C, Xu J et al (2021) An efficient deep learning model for automatic modulation recognition based on parameter estimation and transformation. IEEE Commun Lett 25(10):3287–3290

    Article  MATH  Google Scholar 

  32. Njoku JN, Morocho-Cayamcela ME, Lim W (2021) Cgdnet: Efficient hybrid deep learning model for robust automatic modulation recognition. IEEE Networking Letters 3(2):47–51

    Article  Google Scholar 

  33. Zhang J, Wang T, Feng Z, et al (2023a) Towards the automatic modulation classification with adaptive wavelet network. IEEE Trans Cogn Commun Netw 9(3):549–563

  34. Zhang J, Wang T, Feng Z, et al (2023b) Amc-net: An effective network for automatic modulation classification. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1–5

  35. Cai J, Gan F, Cao X et al (2022) Signal modulation classification based on the transformer network. IEEE Trans Cogn Commun Netw 8(3):1348–1357

    Article  MATH  Google Scholar 

  36. Kong W, Yang Q, Jiao X, et al (2021) A transformer-based ctdnn structure for automatic modulation recognition. In: Proc IEEE 7th Int Conf Comput Commun (ICCC), pp 159–163

  37. Kong W, Jiao X, Xu Y et al (2023) A transformer-based contrastive semi-supervised learning framework for automatic modulation recognition. IEEE Trans Cogn Commun Netw 9(4):950–962

    Article  MATH  Google Scholar 

  38. Hamidi-Rad S, Jain S (2021) Mcformer: A transformer based deep neural network for automatic modulation classification. In: Proc IEEE Global Commun Conf, pp 1–6

  39. Changxin F (2020) Principle of Communications. National Defense Industry Press

  40. Liu F, Masouros C, Petropulu AP, et al (2020a) Joint radar and communication design: Applications, state-of-the-art, and the road ahead. IEEE Trans Commun 68(6):3834–3862

  41. Liu F, Masouros C, Petropulu AP, et al (2020b) Joint radar and communication design: Applications, state-of-the-art, and the road ahead. IEEE Trans Commun 68(6):3834–3862

  42. He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: Proc IEEE/CVF Conf Comput Vis Pattern Recog (CVPR), pp 770–778

  43. Sifre L, Mallat S (2014) Rigid-motion scattering for texture classification. arXiv:1403.1687

  44. Chefer H, Gur S, Wolf L (2021) Transformer interpretability beyond attention visualization. In: Proc IEEE/CVF Conf Comput Vis Pattern Recog (CVPR), pp 782–791

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Hua Meng.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Consent for Publication

Sincerely hope the publication.

Ethics Approval and Consent to Participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Z., Meng, H., Gao, L. et al. Efficient convolutional dual-attention transformer for automatic modulation recognition. Appl Intell 55, 231 (2025). https://doi.org/10.1007/s10489-024-06202-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10489-024-06202-6

Keywords