Skip to main content

Advertisement

Parameters security strategy formulated by hyperchaos in federal learning

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Federated Learning (FL) is a machine learning framework that effectively provides multiple organizations with data usage and model training while meeting the requirements of privacy protection, data security and government regulations. However, the leakage of parameters frequently occurred in the process of their exchange. Existing parametric encryption algorithms, such as differential privacy and homomorphic encryption, can significantly elevate privacy protection levels but always bring negative effect to the convergence performance of the final model or huge time consuming for practical application. Therefore, this paper propose a new encryption and decryption algorithm based on the hyperchaotic system, called bit and parameter correlation permutation (BCP), which helps to protect the parameters through the upload and download process, and such algorithm is compatible with any hyperchaotic map. With this method, we could guarantee the security without any sacrifices of model accuracy in a shorter period of time. Finally, the proposed algorithm achieves a time complexity of O(\(N^2\)) and offers a 0.69 reduction in loss for FL when compared with the differential privacy, while both ensure high security. Additionally, BCP can yield a difference of \(10^{50}\) orders of magnitude, even with inputs differing by only \(10^{-11}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Algorithm 1
Algorithm 2
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Data are available for reasonable request.

References

  1. Li T, Sahu AK, Talwalkar A, Smith V (2020) Federated learning: challenges, methods, and future directions. IEEE Signal Process Mag 37:50–60. https://doi.org/10.1109/MSP.2020.2975749

    Article  MATH  Google Scholar 

  2. Madden SR, Franklin MJ, Hellerstein JM, Hong W (2005) Tinydb: an acquisitional query processing system for sensor networks. ACM Trans Database Syst 30(1):122–173. https://doi.org/10.1145/1061318.1061322

    Article  Google Scholar 

  3. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things. pp 13–16. https://doi.org/10.1145/2342509.2342513

  4. Albrecht JP (2016) How the gdpr will change the world. Eur Data Prot L Rev 2:287

    Article  MATH  Google Scholar 

  5. Parasol M (2018) The impact of china’s 2016 cyber security law on foreign technology firms, and on china’s big data and smart city dreams. Comput Law Secur Rev 34:67–98. https://doi.org/10.1016/j.clsr.2017.05.022

    Article  Google Scholar 

  6. Zhang C, Xie Y, Bai H, Yu B, Li W, Gao Y (2021) A survey on federated learning. Knowledge-Based Systems 216:106775. https://doi.org/10.1016/j.knosys.2021.106775

    Article  MATH  Google Scholar 

  7. McMahan B, Moore E, Ramage D, Hampson S, Arcas BA (2017) Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics, PMLR, pp 1273–1282. https://doi.org/10.48550/arXiv.1602.05629

  8. Li L, Fan Y, Tse M, Lin K-Y (2020) A review of applications in federated learning. Comput Industrial Eng 149:106854. https://doi.org/10.1016/j.cie.2020.106854

    Article  MATH  Google Scholar 

  9. Park J, Lim H (2022) Privacy-preserving federated learning using homomorphic encryption. Appl Sci 12(2):734. https://doi.org/10.3390/app12020734

    Article  MATH  Google Scholar 

  10. Yang W, Liu B, Lu C, Yu N (2020) Privacy preserving on updated parameters in federated learning. In: Proceedings of the ACM turing celebration conference-China, pp 27–31. https://doi.org/10.1145/3393527.3393533

  11. Wei K, Li J, Ding M, Ma C, Yang HH, Farokhi F, Jin S, Quek TQ, Poor HV (2020) Federated learning with differential privacy: algorithms and performance analysis. IEEE Trans Inform Forensics Secur 15:3454–3469. https://doi.org/10.1109/TIFS.2020.2988575

    Article  MATH  Google Scholar 

  12. Ong JCL, Chang SY-H, William W, Butte AJ, Shah NH, Chew LST, Liu N, Doshi-Velez F, Lu W, Savulescu J et al (2024) Ethical and regulatory challenges of large language models in medicine. The Lancet Digital Health 6(6):428–432. https://doi.org/10.1016/S2589-7500(24)00061-X

    Article  Google Scholar 

  13. Oyewole AT, Oguejiofor BB, Eneh NE, Akpuokwe CU, Bakare SS (2024) Data privacy laws and their impact on financial technology companies: a review. Comput Sci IT Res J 5(3):628–650. https://doi.org/10.51594/csitrj.v5i3.911

    Article  Google Scholar 

  14. Singh S, Rosak-Szyrocka J, Tamàndl L (2023) Development, service-oriented architecture, and security of blockchain technology for industry 4.0 iot application. HighTech Innovation J 4(1):134–156. https://doi.org/10.28991/HIJ-2023-04-01-010

  15. Benaich R, El Mendili S, Gahi Y (2023) Advancing healthcare security: a cutting-edge zero-trust blockchain solution for protecting electronic health records. HighTech and Innovation J 4(3):630–652. https://doi.org/10.28991/HIJ-2023-04-03-012

  16. Firsov DV, Silvestrov SN, Kuznetsov NV, Zolotarev EV, Pobyvaev SA (2023) Using ppo models to predict the value of the bnb cryptocurrency. Emerg Sci J 7(4):12061214. https://doi.org/10.28991/ESJ-2023-07-04-012

    Article  Google Scholar 

  17. Vaswani A (2017) Attention is all you need. Advan Neural Inform Process Syst. https://doi.org/10.48550/arXiv.1706.03762

  18. Li J, Chu S, Shu F, Wu J, Jayakody DNK (2019) Contract-based small-cell caching for data disseminations in ultra-dense cellular networks. IEEE Trans Mobile Comput 18:1042–1053. https://doi.org/10.1109/TMC.2018.2853746

    Article  MATH  Google Scholar 

  19. Lee H, Lee SH, Quek TQS (2019) Deep learning for distributed optimization: applications to wireless resource management. IEEE J Selected Areas Commun 37:2251–2266. https://doi.org/10.1109/JSAC.2019.2933890

    Article  MATH  Google Scholar 

  20. Yang X, Huang W, Ye M (2023) Dynamic personalized federated learning with adaptive differential privacy. Advan Neural Inform Process Syst 36:72181–72192. https://doi.org/10.5555/3666122.3669282

    Article  MATH  Google Scholar 

  21. El Ouadrhiri A, Abdelhadi A (2022) Differential privacy for deep and federated learning: a survey. IEEE Access 10:22359–22380. https://doi.org/10.1109/ACCESS.2022.3151670

    Article  MATH  Google Scholar 

  22. Zhang C, Li S, Xia J, Wang W, Yan F, Liu Y (2020) \(\{\)BatchCrypt\(\}\): Efficient homomorphic encryption for \(\{\)Cross-Silo\(\}\) federated learning. In: 2020 USENIX Annual Technical Conference (USENIX ATC 20), pp 493–506

  23. Hijazi NM, Aloqaily M, Guizani M, Ouni B, Karray F (2023) Secure federated learning with fully homomorphic encryption for iot communications. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2023.3302065

  24. Jin W, Yao Y, Han S, Gu J, Joe-Wong C, Ravi S, Avestimehr S, He C (2023) FedML-HE: an efficient homomorphic-encryption-based privacy-preserving federated learning system. https://doi.org/10.48550/arXiv.2303.10837

  25. Fridrich J (1997) Image encryption based on chaotic maps. In: 1997 IEEE International conference on systems, man, and cybernetics. Computational Cybernetics and Simulation, vol 2, IEEE, pp 1105–1110. https://doi.org/10.1109/ICSMC.1997.638097

  26. Wen H, Lin Y (2024) Cryptanalysis of an image encryption algorithm using quantum chaotic map and dna coding. Expert Syst Appl 237:121514. https://doi.org/10.1016/j.eswa.2023.121514

    Article  MATH  Google Scholar 

  27. Hamza R (2017) A novel pseudo random sequence generator for image-cryptographic applications. J Inform Secur Appl 35:119–127. https://doi.org/10.1016/j.jisa.2017.06.005

    Article  MATH  Google Scholar 

  28. Vaidyanathan S, Sambas A, Abd-El-Atty B, Abd El-Latif AA, Tlelo-Cuautle E, Guillén-Fernández O, Mamat M, Mohamed MA, Alçin M, Tuna M et al (2021) A 5-d multi-stable hyperchaotic two-disk dynamo system with no equilibrium point: circuit design, fpga realization and applications to trngs and image encryption. IEEE Access 9:81352–81369. https://doi.org/10.1109/ACCESS.2021.3085483

    Article  Google Scholar 

  29. Yang Z, Liu Y, Wu Y, Qi Y, Ren F, Li S (2023) A high speed pseudo-random bit generator driven by 2d-discrete hyperchaos. Chaos, Solitons & Fractals 167:113039. https://doi.org/10.1016/j.chaos.2022.113039

    Article  Google Scholar 

  30. Li C-Y, Chen Y-H, Chang T-Y, Deng L-Y, To K (2011) Period extension and randomness enhancement using high-throughput reseeding-mixing prng. IEEE Trans Very Large Scale Integration (VLSI) Syst 20(2):385–389. https://doi.org/10.1109/TVLSI.2010.2103332

    Article  MATH  Google Scholar 

  31. Li S, Yin B, Ding W, Zhang T, Ma Y (2018) A nonlinearly modulated logistic map with delay for image encryption. Electronics 7(11):326. https://doi.org/10.3390/electronics7110326

    Article  MATH  Google Scholar 

  32. Bouchereau F, Brady D, Lanzl C (2001) Multipath delay estimation using a superresolution pn-correlation method. IEEE Trans Signal Process 49(5):938–949. https://doi.org/10.1109/78.917798

    Article  Google Scholar 

  33. Lu H, He Z (1996) Chaotic behavior in first-order autonomous continuous-time systems with delay. IEEE Trans Circ Syst I: Fundamental Theory Appl 43(8):700–702. https://doi.org/10.1109/81.526689

    Article  MATH  Google Scholar 

  34. Ikeda K, Matsumoto K (1987) High-dimensional chaotic behavior in systems with time-delayed feedback. Physica D 29(1–2):223–235. https://doi.org/10.1016/0167-2789(87)90058-3

    Article  MATH  Google Scholar 

  35. Rossler O (1979) An equation for hyperchaos. Phys Lett A 71(2–3):155–157. https://doi.org/10.1016/0375-9601(79)90150-6

    Article  MathSciNet  MATH  Google Scholar 

  36. Li Y, Tang WKS, Chen G (2005) Generating hyperchaos via state feedback control. Int J Bifurcation Chaos 15(10):3367–3375. https://doi.org/10.1142/S0218127405013988

    Article  MATH  Google Scholar 

  37. May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467. https://doi.org/10.1038/261459a0

    Article  MATH  Google Scholar 

  38. Farmer JD (1982) Chaotic attractors of an infinite-dimensional dynamical system. Physica D 4(3):366–393. https://doi.org/10.1016/0167-2789(82)90042-2

    Article  MathSciNet  MATH  Google Scholar 

  39. Fulinski A, Kleczkowski A (1987) Nonlinear maps with memory. Phys Scr 35(2):119. https://doi.org/10.1088/0031-8949/35/2/004

    Article  MathSciNet  MATH  Google Scholar 

  40. Shields PC (1973) The theory of bernoulli shifts. University of Chicago Press Chicago

  41. Wu Y, Yang G, Jin H, Noonan JP (2012) Image encryption using the two-dimensional logistic chaotic map. J Electron Imaging 21(1):013014–013014. https://doi.org/10.1117/1.JEI.21.1.013014

    Article  MATH  Google Scholar 

  42. Liu W, Sun K, Zhu C (2016) A fast image encryption algorithm based on chaotic map. Opt Lasers Eng 84:26–36. https://doi.org/10.1016/j.optlaseng.2016.03.019

    Article  MATH  Google Scholar 

  43. Hua Z, Zhou Y, Pun C-M, Chen CP (2015) 2d sine logistic modulation map for image encryption. Inform Sci 297:80–94. https://doi.org/10.1016/j.ins.2014.11.018

    Article  MATH  Google Scholar 

  44. Pan Y, Chao Z, He W, Jing Y, Hongjia L, Liming W (2024) Fedshe: privacy preserving and efficient federated learning with adaptive segmented ckks homomorphic encryption. Cybersecurity 7(1):40. https://doi.org/10.1186/s42400-024-00232-w

    Article  Google Scholar 

  45. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324. https://doi.org/10.1109/5.726791

    Article  MATH  Google Scholar 

  46. Krizhevsky A, Hinton G, et al (2010) Convolutional deep belief networks on CIFAR-10. Unpublished Manuscript 40(7):1–9

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (No. 62406251), Fundamental Research Funds for the Central Universities of China (No. lzujbky-2022-pd12), Basic Research Programs of Taicang, 2022 (No. TC2022JC14), and by the Natural Science Foundation of Gansu Province, China (No. 22YF7GA006 and 22JR5RA492). All authors have read and agreed to the published version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Yang, T., Li, S. et al. Parameters security strategy formulated by hyperchaos in federal learning. Appl Intell 55, 253 (2025). https://doi.org/10.1007/s10489-024-06209-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10489-024-06209-z

Keywords